| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idfu2nda.i |
⊢ 𝐼 = ( idfunc ‘ 𝐶 ) |
| 2 |
|
idfu2nda.d |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐷 Func 𝐸 ) ) |
| 3 |
|
idfu2nda.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) |
| 4 |
1 2
|
eqeltrrid |
⊢ ( 𝜑 → ( idfunc ‘ 𝐶 ) ∈ ( 𝐷 Func 𝐸 ) ) |
| 5 |
|
idfurcl |
⊢ ( ( idfunc ‘ 𝐶 ) ∈ ( 𝐷 Func 𝐸 ) → 𝐶 ∈ Cat ) |
| 6 |
1
|
idfucl |
⊢ ( 𝐶 ∈ Cat → 𝐼 ∈ ( 𝐶 Func 𝐶 ) ) |
| 7 |
4 5 6
|
3syl |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐶 Func 𝐶 ) ) |
| 8 |
7
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝐼 ) ( 𝐶 Func 𝐶 ) ( 2nd ‘ 𝐼 ) ) |
| 9 |
2
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝐼 ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ 𝐼 ) ) |
| 10 |
8 9
|
funchomf |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 11 |
10
|
homfeqbas |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 12 |
3 11
|
eqtr4d |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |