| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idfu2nda.i |
|- I = ( idFunc ` C ) |
| 2 |
|
idfu2nda.d |
|- ( ph -> I e. ( D Func E ) ) |
| 3 |
|
idfu2nda.b |
|- ( ph -> B = ( Base ` D ) ) |
| 4 |
1 2
|
eqeltrrid |
|- ( ph -> ( idFunc ` C ) e. ( D Func E ) ) |
| 5 |
|
idfurcl |
|- ( ( idFunc ` C ) e. ( D Func E ) -> C e. Cat ) |
| 6 |
1
|
idfucl |
|- ( C e. Cat -> I e. ( C Func C ) ) |
| 7 |
4 5 6
|
3syl |
|- ( ph -> I e. ( C Func C ) ) |
| 8 |
7
|
func1st2nd |
|- ( ph -> ( 1st ` I ) ( C Func C ) ( 2nd ` I ) ) |
| 9 |
2
|
func1st2nd |
|- ( ph -> ( 1st ` I ) ( D Func E ) ( 2nd ` I ) ) |
| 10 |
8 9
|
funchomf |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| 11 |
10
|
homfeqbas |
|- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
| 12 |
3 11
|
eqtr4d |
|- ( ph -> B = ( Base ` C ) ) |