Metamath Proof Explorer


Theorem idfu1stalem

Description: Lemma for idfu1sta . (Contributed by Zhi Wang, 10-Nov-2025)

Ref Expression
Hypotheses idfu2nda.i
|- I = ( idFunc ` C )
idfu2nda.d
|- ( ph -> I e. ( D Func E ) )
idfu2nda.b
|- ( ph -> B = ( Base ` D ) )
Assertion idfu1stalem
|- ( ph -> B = ( Base ` C ) )

Proof

Step Hyp Ref Expression
1 idfu2nda.i
 |-  I = ( idFunc ` C )
2 idfu2nda.d
 |-  ( ph -> I e. ( D Func E ) )
3 idfu2nda.b
 |-  ( ph -> B = ( Base ` D ) )
4 1 2 eqeltrrid
 |-  ( ph -> ( idFunc ` C ) e. ( D Func E ) )
5 idfurcl
 |-  ( ( idFunc ` C ) e. ( D Func E ) -> C e. Cat )
6 1 idfucl
 |-  ( C e. Cat -> I e. ( C Func C ) )
7 4 5 6 3syl
 |-  ( ph -> I e. ( C Func C ) )
8 7 func1st2nd
 |-  ( ph -> ( 1st ` I ) ( C Func C ) ( 2nd ` I ) )
9 2 func1st2nd
 |-  ( ph -> ( 1st ` I ) ( D Func E ) ( 2nd ` I ) )
10 8 9 funchomf
 |-  ( ph -> ( Homf ` C ) = ( Homf ` D ) )
11 10 homfeqbas
 |-  ( ph -> ( Base ` C ) = ( Base ` D ) )
12 3 11 eqtr4d
 |-  ( ph -> B = ( Base ` C ) )