Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Functors
idfu1stalem
Next ⟩
idfu1sta
Metamath Proof Explorer
Ascii
Unicode
Theorem
idfu1stalem
Description:
Lemma for
idfu1sta
.
(Contributed by
Zhi Wang
, 10-Nov-2025)
Ref
Expression
Hypotheses
idfu2nda.i
⊢
I
=
id
func
⁡
C
idfu2nda.d
⊢
φ
→
I
∈
D
Func
E
idfu2nda.b
⊢
φ
→
B
=
Base
D
Assertion
idfu1stalem
⊢
φ
→
B
=
Base
C
Proof
Step
Hyp
Ref
Expression
1
idfu2nda.i
⊢
I
=
id
func
⁡
C
2
idfu2nda.d
⊢
φ
→
I
∈
D
Func
E
3
idfu2nda.b
⊢
φ
→
B
=
Base
D
4
1
2
eqeltrrid
⊢
φ
→
id
func
⁡
C
∈
D
Func
E
5
idfurcl
⊢
id
func
⁡
C
∈
D
Func
E
→
C
∈
Cat
6
1
idfucl
⊢
C
∈
Cat
→
I
∈
C
Func
C
7
4
5
6
3syl
⊢
φ
→
I
∈
C
Func
C
8
7
func1st2nd
⊢
φ
→
1
st
⁡
I
C
Func
C
2
nd
⁡
I
9
2
func1st2nd
⊢
φ
→
1
st
⁡
I
D
Func
E
2
nd
⁡
I
10
8
9
funchomf
⊢
φ
→
Hom
𝑓
⁡
C
=
Hom
𝑓
⁡
D
11
10
homfeqbas
⊢
φ
→
Base
C
=
Base
D
12
3
11
eqtr4d
⊢
φ
→
B
=
Base
C