Metamath Proof Explorer


Theorem idfu1sta

Description: Value of the object part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025)

Ref Expression
Hypotheses idfu2nda.i I = id func C
idfu2nda.d φ I D Func E
idfu2nda.b φ B = Base D
Assertion idfu1sta φ 1 st I = I B

Proof

Step Hyp Ref Expression
1 idfu2nda.i I = id func C
2 idfu2nda.d φ I D Func E
3 idfu2nda.b φ B = Base D
4 eqid Base C = Base C
5 1 2 eqeltrrid φ id func C D Func E
6 idfurcl id func C D Func E C Cat
7 5 6 syl φ C Cat
8 1 4 7 idfu1st φ 1 st I = I Base C
9 1 2 3 idfu1stalem φ B = Base C
10 9 reseq2d φ I B = I Base C
11 8 10 eqtr4d φ 1 st I = I B