| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idfu2nda.i |
|- I = ( idFunc ` C ) |
| 2 |
|
idfu2nda.d |
|- ( ph -> I e. ( D Func E ) ) |
| 3 |
|
idfu2nda.b |
|- ( ph -> B = ( Base ` D ) ) |
| 4 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 5 |
1 2
|
eqeltrrid |
|- ( ph -> ( idFunc ` C ) e. ( D Func E ) ) |
| 6 |
|
idfurcl |
|- ( ( idFunc ` C ) e. ( D Func E ) -> C e. Cat ) |
| 7 |
5 6
|
syl |
|- ( ph -> C e. Cat ) |
| 8 |
1 4 7
|
idfu1st |
|- ( ph -> ( 1st ` I ) = ( _I |` ( Base ` C ) ) ) |
| 9 |
1 2 3
|
idfu1stalem |
|- ( ph -> B = ( Base ` C ) ) |
| 10 |
9
|
reseq2d |
|- ( ph -> ( _I |` B ) = ( _I |` ( Base ` C ) ) ) |
| 11 |
8 10
|
eqtr4d |
|- ( ph -> ( 1st ` I ) = ( _I |` B ) ) |