Step |
Hyp |
Ref |
Expression |
1 |
|
idfuval.i |
|- I = ( idFunc ` C ) |
2 |
|
idfuval.b |
|- B = ( Base ` C ) |
3 |
|
idfuval.c |
|- ( ph -> C e. Cat ) |
4 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
5 |
1 2 3 4
|
idfuval |
|- ( ph -> I = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) >. ) |
6 |
5
|
fveq2d |
|- ( ph -> ( 1st ` I ) = ( 1st ` <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) >. ) ) |
7 |
2
|
fvexi |
|- B e. _V |
8 |
|
resiexg |
|- ( B e. _V -> ( _I |` B ) e. _V ) |
9 |
7 8
|
ax-mp |
|- ( _I |` B ) e. _V |
10 |
7 7
|
xpex |
|- ( B X. B ) e. _V |
11 |
10
|
mptex |
|- ( z e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) e. _V |
12 |
9 11
|
op1st |
|- ( 1st ` <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( ( Hom ` C ) ` z ) ) ) >. ) = ( _I |` B ) |
13 |
6 12
|
eqtrdi |
|- ( ph -> ( 1st ` I ) = ( _I |` B ) ) |