Metamath Proof Explorer


Theorem idfu1sta

Description: Value of the object part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025)

Ref Expression
Hypotheses idfu2nda.i 𝐼 = ( idfunc𝐶 )
idfu2nda.d ( 𝜑𝐼 ∈ ( 𝐷 Func 𝐸 ) )
idfu2nda.b ( 𝜑𝐵 = ( Base ‘ 𝐷 ) )
Assertion idfu1sta ( 𝜑 → ( 1st𝐼 ) = ( I ↾ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 idfu2nda.i 𝐼 = ( idfunc𝐶 )
2 idfu2nda.d ( 𝜑𝐼 ∈ ( 𝐷 Func 𝐸 ) )
3 idfu2nda.b ( 𝜑𝐵 = ( Base ‘ 𝐷 ) )
4 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
5 1 2 eqeltrrid ( 𝜑 → ( idfunc𝐶 ) ∈ ( 𝐷 Func 𝐸 ) )
6 idfurcl ( ( idfunc𝐶 ) ∈ ( 𝐷 Func 𝐸 ) → 𝐶 ∈ Cat )
7 5 6 syl ( 𝜑𝐶 ∈ Cat )
8 1 4 7 idfu1st ( 𝜑 → ( 1st𝐼 ) = ( I ↾ ( Base ‘ 𝐶 ) ) )
9 1 2 3 idfu1stalem ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
10 9 reseq2d ( 𝜑 → ( I ↾ 𝐵 ) = ( I ↾ ( Base ‘ 𝐶 ) ) )
11 8 10 eqtr4d ( 𝜑 → ( 1st𝐼 ) = ( I ↾ 𝐵 ) )