| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idfu2nda.i |
⊢ 𝐼 = ( idfunc ‘ 𝐶 ) |
| 2 |
|
idfu2nda.d |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐷 Func 𝐸 ) ) |
| 3 |
|
idfu2nda.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 5 |
1 2
|
eqeltrrid |
⊢ ( 𝜑 → ( idfunc ‘ 𝐶 ) ∈ ( 𝐷 Func 𝐸 ) ) |
| 6 |
|
idfurcl |
⊢ ( ( idfunc ‘ 𝐶 ) ∈ ( 𝐷 Func 𝐸 ) → 𝐶 ∈ Cat ) |
| 7 |
5 6
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 8 |
1 4 7
|
idfu1st |
⊢ ( 𝜑 → ( 1st ‘ 𝐼 ) = ( I ↾ ( Base ‘ 𝐶 ) ) ) |
| 9 |
1 2 3
|
idfu1stalem |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 10 |
9
|
reseq2d |
⊢ ( 𝜑 → ( I ↾ 𝐵 ) = ( I ↾ ( Base ‘ 𝐶 ) ) ) |
| 11 |
8 10
|
eqtr4d |
⊢ ( 𝜑 → ( 1st ‘ 𝐼 ) = ( I ↾ 𝐵 ) ) |