Metamath Proof Explorer


Theorem idfu1a

Description: Value of the object part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025)

Ref Expression
Hypotheses idfu2nda.i 𝐼 = ( idfunc𝐶 )
idfu2nda.d ( 𝜑𝐼 ∈ ( 𝐷 Func 𝐸 ) )
idfu2nda.b ( 𝜑𝐵 = ( Base ‘ 𝐷 ) )
idfu2nda.x ( 𝜑𝑋𝐵 )
Assertion idfu1a ( 𝜑 → ( ( 1st𝐼 ) ‘ 𝑋 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 idfu2nda.i 𝐼 = ( idfunc𝐶 )
2 idfu2nda.d ( 𝜑𝐼 ∈ ( 𝐷 Func 𝐸 ) )
3 idfu2nda.b ( 𝜑𝐵 = ( Base ‘ 𝐷 ) )
4 idfu2nda.x ( 𝜑𝑋𝐵 )
5 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
6 1 2 eqeltrrid ( 𝜑 → ( idfunc𝐶 ) ∈ ( 𝐷 Func 𝐸 ) )
7 idfurcl ( ( idfunc𝐶 ) ∈ ( 𝐷 Func 𝐸 ) → 𝐶 ∈ Cat )
8 6 7 syl ( 𝜑𝐶 ∈ Cat )
9 1 2 3 idfu1stalem ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
10 4 9 eleqtrd ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
11 1 5 8 10 idfu1 ( 𝜑 → ( ( 1st𝐼 ) ‘ 𝑋 ) = 𝑋 )