Description: Value of the object part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfu2nda.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| idfu2nda.d | ⊢ ( 𝜑 → 𝐼 ∈ ( 𝐷 Func 𝐸 ) ) | ||
| idfu2nda.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) | ||
| idfu2nda.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | idfu1a | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐼 ) ‘ 𝑋 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfu2nda.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| 2 | idfu2nda.d | ⊢ ( 𝜑 → 𝐼 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 3 | idfu2nda.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) | |
| 4 | idfu2nda.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 6 | 1 2 | eqeltrrid | ⊢ ( 𝜑 → ( idfunc ‘ 𝐶 ) ∈ ( 𝐷 Func 𝐸 ) ) |
| 7 | idfurcl | ⊢ ( ( idfunc ‘ 𝐶 ) ∈ ( 𝐷 Func 𝐸 ) → 𝐶 ∈ Cat ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 9 | 1 2 3 | idfu1stalem | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 10 | 4 9 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 11 | 1 5 8 10 | idfu1 | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐼 ) ‘ 𝑋 ) = 𝑋 ) |