| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idfu2nda.i |
⊢ 𝐼 = ( idfunc ‘ 𝐶 ) |
| 2 |
|
idfu2nda.d |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐷 Func 𝐸 ) ) |
| 3 |
|
idfu2nda.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) |
| 4 |
|
idfu2nda.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
idfu2nda.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 6 |
|
idfu2nda.h |
⊢ ( 𝜑 → 𝐻 = ( 𝑋 ( Hom ‘ 𝐷 ) 𝑌 ) ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 8 |
1 2
|
eqeltrrid |
⊢ ( 𝜑 → ( idfunc ‘ 𝐶 ) ∈ ( 𝐷 Func 𝐸 ) ) |
| 9 |
|
idfurcl |
⊢ ( ( idfunc ‘ 𝐶 ) ∈ ( 𝐷 Func 𝐸 ) → 𝐶 ∈ Cat ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 11 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 12 |
1 2 3
|
idfu1stalem |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 13 |
4 12
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 14 |
5 12
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 15 |
1 7 10 11 13 14
|
idfu2nd |
⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐼 ) 𝑌 ) = ( I ↾ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) |
| 16 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 17 |
1
|
idfucl |
⊢ ( 𝐶 ∈ Cat → 𝐼 ∈ ( 𝐶 Func 𝐶 ) ) |
| 18 |
10 17
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐶 Func 𝐶 ) ) |
| 19 |
18
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝐼 ) ( 𝐶 Func 𝐶 ) ( 2nd ‘ 𝐼 ) ) |
| 20 |
2
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝐼 ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ 𝐼 ) ) |
| 21 |
19 20
|
funchomf |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 22 |
7 11 16 21 13 14
|
homfeqval |
⊢ ( 𝜑 → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) = ( 𝑋 ( Hom ‘ 𝐷 ) 𝑌 ) ) |
| 23 |
6 22
|
eqtr4d |
⊢ ( 𝜑 → 𝐻 = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 24 |
23
|
reseq2d |
⊢ ( 𝜑 → ( I ↾ 𝐻 ) = ( I ↾ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) |
| 25 |
15 24
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐼 ) 𝑌 ) = ( I ↾ 𝐻 ) ) |