Metamath Proof Explorer


Theorem idfu2nda

Description: Value of the morphism part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025)

Ref Expression
Hypotheses idfu2nda.i 𝐼 = ( idfunc𝐶 )
idfu2nda.d ( 𝜑𝐼 ∈ ( 𝐷 Func 𝐸 ) )
idfu2nda.b ( 𝜑𝐵 = ( Base ‘ 𝐷 ) )
idfu2nda.x ( 𝜑𝑋𝐵 )
idfu2nda.y ( 𝜑𝑌𝐵 )
idfu2nda.h ( 𝜑𝐻 = ( 𝑋 ( Hom ‘ 𝐷 ) 𝑌 ) )
Assertion idfu2nda ( 𝜑 → ( 𝑋 ( 2nd𝐼 ) 𝑌 ) = ( I ↾ 𝐻 ) )

Proof

Step Hyp Ref Expression
1 idfu2nda.i 𝐼 = ( idfunc𝐶 )
2 idfu2nda.d ( 𝜑𝐼 ∈ ( 𝐷 Func 𝐸 ) )
3 idfu2nda.b ( 𝜑𝐵 = ( Base ‘ 𝐷 ) )
4 idfu2nda.x ( 𝜑𝑋𝐵 )
5 idfu2nda.y ( 𝜑𝑌𝐵 )
6 idfu2nda.h ( 𝜑𝐻 = ( 𝑋 ( Hom ‘ 𝐷 ) 𝑌 ) )
7 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
8 1 2 eqeltrrid ( 𝜑 → ( idfunc𝐶 ) ∈ ( 𝐷 Func 𝐸 ) )
9 idfurcl ( ( idfunc𝐶 ) ∈ ( 𝐷 Func 𝐸 ) → 𝐶 ∈ Cat )
10 8 9 syl ( 𝜑𝐶 ∈ Cat )
11 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
12 1 2 3 idfu1stalem ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
13 4 12 eleqtrd ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
14 5 12 eleqtrd ( 𝜑𝑌 ∈ ( Base ‘ 𝐶 ) )
15 1 7 10 11 13 14 idfu2nd ( 𝜑 → ( 𝑋 ( 2nd𝐼 ) 𝑌 ) = ( I ↾ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) )
16 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
17 1 idfucl ( 𝐶 ∈ Cat → 𝐼 ∈ ( 𝐶 Func 𝐶 ) )
18 10 17 syl ( 𝜑𝐼 ∈ ( 𝐶 Func 𝐶 ) )
19 18 func1st2nd ( 𝜑 → ( 1st𝐼 ) ( 𝐶 Func 𝐶 ) ( 2nd𝐼 ) )
20 2 func1st2nd ( 𝜑 → ( 1st𝐼 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐼 ) )
21 19 20 funchomf ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
22 7 11 16 21 13 14 homfeqval ( 𝜑 → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) = ( 𝑋 ( Hom ‘ 𝐷 ) 𝑌 ) )
23 6 22 eqtr4d ( 𝜑𝐻 = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) )
24 23 reseq2d ( 𝜑 → ( I ↾ 𝐻 ) = ( I ↾ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) )
25 15 24 eqtr4d ( 𝜑 → ( 𝑋 ( 2nd𝐼 ) 𝑌 ) = ( I ↾ 𝐻 ) )