| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubclem1.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
| 2 |
|
imasubclem1.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) |
| 3 |
|
cnvexg |
⊢ ( 𝐹 ∈ 𝑉 → ◡ 𝐹 ∈ V ) |
| 4 |
1 3
|
syl |
⊢ ( 𝜑 → ◡ 𝐹 ∈ V ) |
| 5 |
4
|
imaexd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝐴 ) ∈ V ) |
| 6 |
|
cnvexg |
⊢ ( 𝐺 ∈ 𝑊 → ◡ 𝐺 ∈ V ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → ◡ 𝐺 ∈ V ) |
| 8 |
7
|
imaexd |
⊢ ( 𝜑 → ( ◡ 𝐺 “ 𝐵 ) ∈ V ) |
| 9 |
5 8
|
xpexd |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ∈ V ) |
| 10 |
|
fvex |
⊢ ( 𝐻 ‘ 𝐶 ) ∈ V |
| 11 |
10
|
imaex |
⊢ ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V |
| 12 |
11
|
rgenw |
⊢ ∀ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V |
| 13 |
|
iunexg |
⊢ ( ( ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ∈ V ∧ ∀ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V ) → ∪ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V ) |
| 14 |
9 12 13
|
sylancl |
⊢ ( 𝜑 → ∪ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V ) |