Metamath Proof Explorer


Theorem imasubclem1

Description: Lemma for imasubc . (Contributed by Zhi Wang, 6-Nov-2025)

Ref Expression
Hypotheses imasubclem1.f ( 𝜑𝐹𝑉 )
imasubclem1.g ( 𝜑𝐺𝑊 )
Assertion imasubclem1 ( 𝜑 𝑥 ∈ ( ( 𝐹𝐴 ) × ( 𝐺𝐵 ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) ∈ V )

Proof

Step Hyp Ref Expression
1 imasubclem1.f ( 𝜑𝐹𝑉 )
2 imasubclem1.g ( 𝜑𝐺𝑊 )
3 cnvexg ( 𝐹𝑉 𝐹 ∈ V )
4 1 3 syl ( 𝜑 𝐹 ∈ V )
5 4 imaexd ( 𝜑 → ( 𝐹𝐴 ) ∈ V )
6 cnvexg ( 𝐺𝑊 𝐺 ∈ V )
7 2 6 syl ( 𝜑 𝐺 ∈ V )
8 7 imaexd ( 𝜑 → ( 𝐺𝐵 ) ∈ V )
9 5 8 xpexd ( 𝜑 → ( ( 𝐹𝐴 ) × ( 𝐺𝐵 ) ) ∈ V )
10 fvex ( 𝐻𝐶 ) ∈ V
11 10 imaex ( ( 𝐻𝐶 ) “ 𝐷 ) ∈ V
12 11 rgenw 𝑥 ∈ ( ( 𝐹𝐴 ) × ( 𝐺𝐵 ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) ∈ V
13 iunexg ( ( ( ( 𝐹𝐴 ) × ( 𝐺𝐵 ) ) ∈ V ∧ ∀ 𝑥 ∈ ( ( 𝐹𝐴 ) × ( 𝐺𝐵 ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) ∈ V ) → 𝑥 ∈ ( ( 𝐹𝐴 ) × ( 𝐺𝐵 ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) ∈ V )
14 9 12 13 sylancl ( 𝜑 𝑥 ∈ ( ( 𝐹𝐴 ) × ( 𝐺𝐵 ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) ∈ V )