Metamath Proof Explorer


Theorem imasubclem2

Description: Lemma for imasubc . (Contributed by Zhi Wang, 7-Nov-2025)

Ref Expression
Hypotheses imasubclem1.f ( 𝜑𝐹𝑉 )
imasubclem1.g ( 𝜑𝐺𝑊 )
imasubclem2.k 𝐾 = ( 𝑦𝑋 , 𝑧𝑌 𝑥 ∈ ( ( 𝐹𝐴 ) × ( 𝐺𝐵 ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) )
Assertion imasubclem2 ( 𝜑𝐾 Fn ( 𝑋 × 𝑌 ) )

Proof

Step Hyp Ref Expression
1 imasubclem1.f ( 𝜑𝐹𝑉 )
2 imasubclem1.g ( 𝜑𝐺𝑊 )
3 imasubclem2.k 𝐾 = ( 𝑦𝑋 , 𝑧𝑌 𝑥 ∈ ( ( 𝐹𝐴 ) × ( 𝐺𝐵 ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) )
4 1 2 imasubclem1 ( 𝜑 𝑥 ∈ ( ( 𝐹𝐴 ) × ( 𝐺𝐵 ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) ∈ V )
5 4 adantr ( ( 𝜑 ∧ ( 𝑦𝑋𝑧𝑌 ) ) → 𝑥 ∈ ( ( 𝐹𝐴 ) × ( 𝐺𝐵 ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) ∈ V )
6 5 ralrimivva ( 𝜑 → ∀ 𝑦𝑋𝑧𝑌 𝑥 ∈ ( ( 𝐹𝐴 ) × ( 𝐺𝐵 ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) ∈ V )
7 3 fnmpo ( ∀ 𝑦𝑋𝑧𝑌 𝑥 ∈ ( ( 𝐹𝐴 ) × ( 𝐺𝐵 ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) ∈ V → 𝐾 Fn ( 𝑋 × 𝑌 ) )
8 6 7 syl ( 𝜑𝐾 Fn ( 𝑋 × 𝑌 ) )