| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubclem1.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
| 2 |
|
imasubclem1.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) |
| 3 |
|
imasubclem2.k |
⊢ 𝐾 = ( 𝑦 ∈ 𝑋 , 𝑧 ∈ 𝑌 ↦ ∪ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ) |
| 4 |
1 2
|
imasubclem1 |
⊢ ( 𝜑 → ∪ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌 ) ) → ∪ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V ) |
| 6 |
5
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑌 ∪ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V ) |
| 7 |
3
|
fnmpo |
⊢ ( ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑌 ∪ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) × ( ◡ 𝐺 “ 𝐵 ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V → 𝐾 Fn ( 𝑋 × 𝑌 ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝜑 → 𝐾 Fn ( 𝑋 × 𝑌 ) ) |