Metamath Proof Explorer


Theorem imasubclem3

Description: Lemma for imasubc . (Contributed by Zhi Wang, 7-Nov-2025)

Ref Expression
Hypotheses imasubclem1.f ( 𝜑𝐹𝑉 )
imasubclem1.g ( 𝜑𝐺𝑊 )
imasubclem3.x ( 𝜑𝑋𝐴 )
imasubclem3.y ( 𝜑𝑌𝐵 )
imasubclem3.k 𝐾 = ( 𝑥𝐴 , 𝑦𝐵 𝑧 ∈ ( ( 𝐹 “ { 𝑥 } ) × ( 𝐺 “ { 𝑦 } ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) )
Assertion imasubclem3 ( 𝜑 → ( 𝑋 𝐾 𝑌 ) = 𝑧 ∈ ( ( 𝐹 “ { 𝑋 } ) × ( 𝐺 “ { 𝑌 } ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 imasubclem1.f ( 𝜑𝐹𝑉 )
2 imasubclem1.g ( 𝜑𝐺𝑊 )
3 imasubclem3.x ( 𝜑𝑋𝐴 )
4 imasubclem3.y ( 𝜑𝑌𝐵 )
5 imasubclem3.k 𝐾 = ( 𝑥𝐴 , 𝑦𝐵 𝑧 ∈ ( ( 𝐹 “ { 𝑥 } ) × ( 𝐺 “ { 𝑦 } ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) )
6 1 2 imasubclem1 ( 𝜑 𝑧 ∈ ( ( 𝐹 “ { 𝑋 } ) × ( 𝐺 “ { 𝑌 } ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) ∈ V )
7 simpl ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → 𝑥 = 𝑋 )
8 7 sneqd ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → { 𝑥 } = { 𝑋 } )
9 8 imaeq2d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝐹 “ { 𝑥 } ) = ( 𝐹 “ { 𝑋 } ) )
10 simpr ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → 𝑦 = 𝑌 )
11 10 sneqd ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → { 𝑦 } = { 𝑌 } )
12 11 imaeq2d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝐺 “ { 𝑦 } ) = ( 𝐺 “ { 𝑌 } ) )
13 9 12 xpeq12d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ( 𝐹 “ { 𝑥 } ) × ( 𝐺 “ { 𝑦 } ) ) = ( ( 𝐹 “ { 𝑋 } ) × ( 𝐺 “ { 𝑌 } ) ) )
14 13 iuneq1d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → 𝑧 ∈ ( ( 𝐹 “ { 𝑥 } ) × ( 𝐺 “ { 𝑦 } ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) = 𝑧 ∈ ( ( 𝐹 “ { 𝑋 } ) × ( 𝐺 “ { 𝑌 } ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) )
15 14 5 ovmpoga ( ( 𝑋𝐴𝑌𝐵 𝑧 ∈ ( ( 𝐹 “ { 𝑋 } ) × ( 𝐺 “ { 𝑌 } ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) ∈ V ) → ( 𝑋 𝐾 𝑌 ) = 𝑧 ∈ ( ( 𝐹 “ { 𝑋 } ) × ( 𝐺 “ { 𝑌 } ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) )
16 3 4 6 15 syl3anc ( 𝜑 → ( 𝑋 𝐾 𝑌 ) = 𝑧 ∈ ( ( 𝐹 “ { 𝑋 } ) × ( 𝐺 “ { 𝑌 } ) ) ( ( 𝐻𝐶 ) “ 𝐷 ) )