| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubclem1.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
| 2 |
|
imasubclem1.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) |
| 3 |
|
imasubclem3.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 4 |
|
imasubclem3.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 5 |
|
imasubclem3.k |
⊢ 𝐾 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ∪ 𝑧 ∈ ( ( ◡ 𝐹 “ { 𝑥 } ) × ( ◡ 𝐺 “ { 𝑦 } ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ) |
| 6 |
1 2
|
imasubclem1 |
⊢ ( 𝜑 → ∪ 𝑧 ∈ ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐺 “ { 𝑌 } ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V ) |
| 7 |
|
simpl |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑥 = 𝑋 ) |
| 8 |
7
|
sneqd |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → { 𝑥 } = { 𝑋 } ) |
| 9 |
8
|
imaeq2d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ◡ 𝐹 “ { 𝑥 } ) = ( ◡ 𝐹 “ { 𝑋 } ) ) |
| 10 |
|
simpr |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑦 = 𝑌 ) |
| 11 |
10
|
sneqd |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → { 𝑦 } = { 𝑌 } ) |
| 12 |
11
|
imaeq2d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ◡ 𝐺 “ { 𝑦 } ) = ( ◡ 𝐺 “ { 𝑌 } ) ) |
| 13 |
9 12
|
xpeq12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( ◡ 𝐹 “ { 𝑥 } ) × ( ◡ 𝐺 “ { 𝑦 } ) ) = ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐺 “ { 𝑌 } ) ) ) |
| 14 |
13
|
iuneq1d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ∪ 𝑧 ∈ ( ( ◡ 𝐹 “ { 𝑥 } ) × ( ◡ 𝐺 “ { 𝑦 } ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) = ∪ 𝑧 ∈ ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐺 “ { 𝑌 } ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ) |
| 15 |
14 5
|
ovmpoga |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ ∪ 𝑧 ∈ ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐺 “ { 𝑌 } ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ∈ V ) → ( 𝑋 𝐾 𝑌 ) = ∪ 𝑧 ∈ ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐺 “ { 𝑌 } ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ) |
| 16 |
3 4 6 15
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 𝐾 𝑌 ) = ∪ 𝑧 ∈ ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐺 “ { 𝑌 } ) ) ( ( 𝐻 ‘ 𝐶 ) “ 𝐷 ) ) |