| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubc.s |
⊢ 𝑆 = ( 𝐹 “ 𝐴 ) |
| 2 |
|
imasubc.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
| 3 |
|
imasubc.k |
⊢ 𝐾 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑥 } ) × ( ◡ 𝐹 “ { 𝑦 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) |
| 4 |
|
imasubc.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Full 𝐸 ) 𝐺 ) |
| 5 |
|
imasubc.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
| 6 |
|
imasubc.j |
⊢ 𝐽 = ( Homf ‘ 𝐸 ) |
| 7 |
|
relfull |
⊢ Rel ( 𝐷 Full 𝐸 ) |
| 8 |
7
|
brrelex1i |
⊢ ( 𝐹 ( 𝐷 Full 𝐸 ) 𝐺 → 𝐹 ∈ V ) |
| 9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 10 |
9 9 3
|
imasubclem2 |
⊢ ( 𝜑 → 𝐾 Fn ( 𝑆 × 𝑆 ) ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 12 |
|
fullfunc |
⊢ ( 𝐷 Full 𝐸 ) ⊆ ( 𝐷 Func 𝐸 ) |
| 13 |
12
|
ssbri |
⊢ ( 𝐹 ( 𝐷 Full 𝐸 ) 𝐺 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 14 |
4 13
|
syl |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 15 |
11 5 14
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐷 ) ⟶ 𝐶 ) |
| 16 |
15
|
fimassd |
⊢ ( 𝜑 → ( 𝐹 “ 𝐴 ) ⊆ 𝐶 ) |
| 17 |
1 16
|
eqsstrid |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐶 ) |
| 18 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝑧 ∈ 𝑆 ) |
| 19 |
18 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝑧 ∈ ( 𝐹 “ 𝐴 ) ) |
| 20 |
|
inisegn0a |
⊢ ( 𝑧 ∈ ( 𝐹 “ 𝐴 ) → ( ◡ 𝐹 “ { 𝑧 } ) ≠ ∅ ) |
| 21 |
19 20
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( ◡ 𝐹 “ { 𝑧 } ) ≠ ∅ ) |
| 22 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝑤 ∈ 𝑆 ) |
| 23 |
22 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝑤 ∈ ( 𝐹 “ 𝐴 ) ) |
| 24 |
|
inisegn0a |
⊢ ( 𝑤 ∈ ( 𝐹 “ 𝐴 ) → ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) |
| 25 |
23 24
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) |
| 26 |
21 25
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( ( ◡ 𝐹 “ { 𝑧 } ) ≠ ∅ ∧ ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) ) |
| 27 |
|
xpnz |
⊢ ( ( ( ◡ 𝐹 “ { 𝑧 } ) ≠ ∅ ∧ ( ◡ 𝐹 “ { 𝑤 } ) ≠ ∅ ) ↔ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ≠ ∅ ) |
| 28 |
26 27
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ≠ ∅ ) |
| 29 |
15
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝐷 ) ) |
| 30 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → 𝐹 Fn ( Base ‘ 𝐷 ) ) |
| 31 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ) |
| 32 |
|
fniniseg |
⊢ ( 𝐹 Fn ( Base ‘ 𝐷 ) → ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ↔ ( 𝑚 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑚 ) = 𝑧 ) ) ) |
| 33 |
32
|
biimpa |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝐷 ) ∧ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ) → ( 𝑚 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑚 ) = 𝑧 ) ) |
| 34 |
30 31 33
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( 𝑚 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑚 ) = 𝑧 ) ) |
| 35 |
34
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( 𝐹 ‘ 𝑚 ) = 𝑧 ) |
| 36 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) |
| 37 |
|
fniniseg |
⊢ ( 𝐹 Fn ( Base ‘ 𝐷 ) → ( 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ↔ ( 𝑛 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑤 ) ) ) |
| 38 |
37
|
biimpa |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝐷 ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) → ( 𝑛 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑤 ) ) |
| 39 |
30 36 38
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( 𝑛 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑤 ) ) |
| 40 |
39
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( 𝐹 ‘ 𝑛 ) = 𝑤 ) |
| 41 |
35 40
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( ( 𝐹 ‘ 𝑚 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 42 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
| 43 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → 𝐹 ( 𝐷 Full 𝐸 ) 𝐺 ) |
| 44 |
34
|
simpld |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → 𝑚 ∈ ( Base ‘ 𝐷 ) ) |
| 45 |
39
|
simpld |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → 𝑛 ∈ ( Base ‘ 𝐷 ) ) |
| 46 |
11 42 2 43 44 45
|
fullfo |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( 𝑚 𝐺 𝑛 ) : ( 𝑚 𝐻 𝑛 ) –onto→ ( ( 𝐹 ‘ 𝑚 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑛 ) ) ) |
| 47 |
|
foeq3 |
⊢ ( ( ( 𝐹 ‘ 𝑚 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) → ( ( 𝑚 𝐺 𝑛 ) : ( 𝑚 𝐻 𝑛 ) –onto→ ( ( 𝐹 ‘ 𝑚 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑛 ) ) ↔ ( 𝑚 𝐺 𝑛 ) : ( 𝑚 𝐻 𝑛 ) –onto→ ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) ) |
| 48 |
47
|
biimpa |
⊢ ( ( ( ( 𝐹 ‘ 𝑚 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ∧ ( 𝑚 𝐺 𝑛 ) : ( 𝑚 𝐻 𝑛 ) –onto→ ( ( 𝐹 ‘ 𝑚 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝑚 𝐺 𝑛 ) : ( 𝑚 𝐻 𝑛 ) –onto→ ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 49 |
41 46 48
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( 𝑚 𝐺 𝑛 ) : ( 𝑚 𝐻 𝑛 ) –onto→ ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 50 |
|
foima |
⊢ ( ( 𝑚 𝐺 𝑛 ) : ( 𝑚 𝐻 𝑛 ) –onto→ ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) → ( ( 𝑚 𝐺 𝑛 ) “ ( 𝑚 𝐻 𝑛 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 51 |
49 50
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( ( 𝑚 𝐺 𝑛 ) “ ( 𝑚 𝐻 𝑛 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 52 |
51
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ∀ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∀ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ( ( 𝑚 𝐺 𝑛 ) “ ( 𝑚 𝐻 𝑛 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 53 |
|
fveq2 |
⊢ ( 𝑝 = 〈 𝑚 , 𝑛 〉 → ( 𝐺 ‘ 𝑝 ) = ( 𝐺 ‘ 〈 𝑚 , 𝑛 〉 ) ) |
| 54 |
|
df-ov |
⊢ ( 𝑚 𝐺 𝑛 ) = ( 𝐺 ‘ 〈 𝑚 , 𝑛 〉 ) |
| 55 |
53 54
|
eqtr4di |
⊢ ( 𝑝 = 〈 𝑚 , 𝑛 〉 → ( 𝐺 ‘ 𝑝 ) = ( 𝑚 𝐺 𝑛 ) ) |
| 56 |
|
fveq2 |
⊢ ( 𝑝 = 〈 𝑚 , 𝑛 〉 → ( 𝐻 ‘ 𝑝 ) = ( 𝐻 ‘ 〈 𝑚 , 𝑛 〉 ) ) |
| 57 |
|
df-ov |
⊢ ( 𝑚 𝐻 𝑛 ) = ( 𝐻 ‘ 〈 𝑚 , 𝑛 〉 ) |
| 58 |
56 57
|
eqtr4di |
⊢ ( 𝑝 = 〈 𝑚 , 𝑛 〉 → ( 𝐻 ‘ 𝑝 ) = ( 𝑚 𝐻 𝑛 ) ) |
| 59 |
55 58
|
imaeq12d |
⊢ ( 𝑝 = 〈 𝑚 , 𝑛 〉 → ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) = ( ( 𝑚 𝐺 𝑛 ) “ ( 𝑚 𝐻 𝑛 ) ) ) |
| 60 |
59
|
eqeq1d |
⊢ ( 𝑝 = 〈 𝑚 , 𝑛 〉 → ( ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ↔ ( ( 𝑚 𝐺 𝑛 ) “ ( 𝑚 𝐻 𝑛 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) ) |
| 61 |
60
|
ralxp |
⊢ ( ∀ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ↔ ∀ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∀ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ( ( 𝑚 𝐺 𝑛 ) “ ( 𝑚 𝐻 𝑛 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 62 |
52 61
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ∀ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 63 |
|
iuneqconst2 |
⊢ ( ( ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ≠ ∅ ∧ ∀ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) → ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 64 |
28 62 63
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 65 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝐹 ∈ V ) |
| 66 |
65 65 18 22 3
|
imasubclem3 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( 𝑧 𝐾 𝑤 ) = ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) |
| 67 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝑆 ⊆ 𝐶 ) |
| 68 |
67 18
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝑧 ∈ 𝐶 ) |
| 69 |
67 22
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝑤 ∈ 𝐶 ) |
| 70 |
6 5 42 68 69
|
homfval |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( 𝑧 𝐽 𝑤 ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 71 |
64 66 70
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( 𝑧 𝐽 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) |
| 72 |
71
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( 𝑧 𝐽 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) |
| 73 |
|
fveq2 |
⊢ ( 𝑞 = 〈 𝑧 , 𝑤 〉 → ( 𝐽 ‘ 𝑞 ) = ( 𝐽 ‘ 〈 𝑧 , 𝑤 〉 ) ) |
| 74 |
|
df-ov |
⊢ ( 𝑧 𝐽 𝑤 ) = ( 𝐽 ‘ 〈 𝑧 , 𝑤 〉 ) |
| 75 |
73 74
|
eqtr4di |
⊢ ( 𝑞 = 〈 𝑧 , 𝑤 〉 → ( 𝐽 ‘ 𝑞 ) = ( 𝑧 𝐽 𝑤 ) ) |
| 76 |
|
fveq2 |
⊢ ( 𝑞 = 〈 𝑧 , 𝑤 〉 → ( 𝐾 ‘ 𝑞 ) = ( 𝐾 ‘ 〈 𝑧 , 𝑤 〉 ) ) |
| 77 |
|
df-ov |
⊢ ( 𝑧 𝐾 𝑤 ) = ( 𝐾 ‘ 〈 𝑧 , 𝑤 〉 ) |
| 78 |
76 77
|
eqtr4di |
⊢ ( 𝑞 = 〈 𝑧 , 𝑤 〉 → ( 𝐾 ‘ 𝑞 ) = ( 𝑧 𝐾 𝑤 ) ) |
| 79 |
75 78
|
eqeq12d |
⊢ ( 𝑞 = 〈 𝑧 , 𝑤 〉 → ( ( 𝐽 ‘ 𝑞 ) = ( 𝐾 ‘ 𝑞 ) ↔ ( 𝑧 𝐽 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) ) |
| 80 |
79
|
ralxp |
⊢ ( ∀ 𝑞 ∈ ( 𝑆 × 𝑆 ) ( 𝐽 ‘ 𝑞 ) = ( 𝐾 ‘ 𝑞 ) ↔ ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( 𝑧 𝐽 𝑤 ) = ( 𝑧 𝐾 𝑤 ) ) |
| 81 |
72 80
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑞 ∈ ( 𝑆 × 𝑆 ) ( 𝐽 ‘ 𝑞 ) = ( 𝐾 ‘ 𝑞 ) ) |
| 82 |
6 5
|
homffn |
⊢ 𝐽 Fn ( 𝐶 × 𝐶 ) |
| 83 |
82
|
a1i |
⊢ ( 𝜑 → 𝐽 Fn ( 𝐶 × 𝐶 ) ) |
| 84 |
|
xpss12 |
⊢ ( ( 𝑆 ⊆ 𝐶 ∧ 𝑆 ⊆ 𝐶 ) → ( 𝑆 × 𝑆 ) ⊆ ( 𝐶 × 𝐶 ) ) |
| 85 |
17 17 84
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 × 𝑆 ) ⊆ ( 𝐶 × 𝐶 ) ) |
| 86 |
|
fvreseq1 |
⊢ ( ( ( 𝐽 Fn ( 𝐶 × 𝐶 ) ∧ 𝐾 Fn ( 𝑆 × 𝑆 ) ) ∧ ( 𝑆 × 𝑆 ) ⊆ ( 𝐶 × 𝐶 ) ) → ( ( 𝐽 ↾ ( 𝑆 × 𝑆 ) ) = 𝐾 ↔ ∀ 𝑞 ∈ ( 𝑆 × 𝑆 ) ( 𝐽 ‘ 𝑞 ) = ( 𝐾 ‘ 𝑞 ) ) ) |
| 87 |
83 10 85 86
|
syl21anc |
⊢ ( 𝜑 → ( ( 𝐽 ↾ ( 𝑆 × 𝑆 ) ) = 𝐾 ↔ ∀ 𝑞 ∈ ( 𝑆 × 𝑆 ) ( 𝐽 ‘ 𝑞 ) = ( 𝐾 ‘ 𝑞 ) ) ) |
| 88 |
81 87
|
mpbird |
⊢ ( 𝜑 → ( 𝐽 ↾ ( 𝑆 × 𝑆 ) ) = 𝐾 ) |
| 89 |
10 17 88
|
3jca |
⊢ ( 𝜑 → ( 𝐾 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ⊆ 𝐶 ∧ ( 𝐽 ↾ ( 𝑆 × 𝑆 ) ) = 𝐾 ) ) |