| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubc.s |
|- S = ( F " A ) |
| 2 |
|
imasubc.h |
|- H = ( Hom ` D ) |
| 3 |
|
imasubc.k |
|- K = ( x e. S , y e. S |-> U_ p e. ( ( `' F " { x } ) X. ( `' F " { y } ) ) ( ( G ` p ) " ( H ` p ) ) ) |
| 4 |
|
imasubc.f |
|- ( ph -> F ( D Full E ) G ) |
| 5 |
|
imasubc.c |
|- C = ( Base ` E ) |
| 6 |
|
imasubc.j |
|- J = ( Homf ` E ) |
| 7 |
|
relfull |
|- Rel ( D Full E ) |
| 8 |
7
|
brrelex1i |
|- ( F ( D Full E ) G -> F e. _V ) |
| 9 |
4 8
|
syl |
|- ( ph -> F e. _V ) |
| 10 |
9 9 3
|
imasubclem2 |
|- ( ph -> K Fn ( S X. S ) ) |
| 11 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 12 |
|
fullfunc |
|- ( D Full E ) C_ ( D Func E ) |
| 13 |
12
|
ssbri |
|- ( F ( D Full E ) G -> F ( D Func E ) G ) |
| 14 |
4 13
|
syl |
|- ( ph -> F ( D Func E ) G ) |
| 15 |
11 5 14
|
funcf1 |
|- ( ph -> F : ( Base ` D ) --> C ) |
| 16 |
15
|
fimassd |
|- ( ph -> ( F " A ) C_ C ) |
| 17 |
1 16
|
eqsstrid |
|- ( ph -> S C_ C ) |
| 18 |
|
simprl |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> z e. S ) |
| 19 |
18 1
|
eleqtrdi |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> z e. ( F " A ) ) |
| 20 |
|
inisegn0a |
|- ( z e. ( F " A ) -> ( `' F " { z } ) =/= (/) ) |
| 21 |
19 20
|
syl |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( `' F " { z } ) =/= (/) ) |
| 22 |
|
simprr |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> w e. S ) |
| 23 |
22 1
|
eleqtrdi |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> w e. ( F " A ) ) |
| 24 |
|
inisegn0a |
|- ( w e. ( F " A ) -> ( `' F " { w } ) =/= (/) ) |
| 25 |
23 24
|
syl |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( `' F " { w } ) =/= (/) ) |
| 26 |
21 25
|
jca |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( ( `' F " { z } ) =/= (/) /\ ( `' F " { w } ) =/= (/) ) ) |
| 27 |
|
xpnz |
|- ( ( ( `' F " { z } ) =/= (/) /\ ( `' F " { w } ) =/= (/) ) <-> ( ( `' F " { z } ) X. ( `' F " { w } ) ) =/= (/) ) |
| 28 |
26 27
|
sylib |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( ( `' F " { z } ) X. ( `' F " { w } ) ) =/= (/) ) |
| 29 |
15
|
ffnd |
|- ( ph -> F Fn ( Base ` D ) ) |
| 30 |
29
|
ad2antrr |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> F Fn ( Base ` D ) ) |
| 31 |
|
simprl |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> m e. ( `' F " { z } ) ) |
| 32 |
|
fniniseg |
|- ( F Fn ( Base ` D ) -> ( m e. ( `' F " { z } ) <-> ( m e. ( Base ` D ) /\ ( F ` m ) = z ) ) ) |
| 33 |
32
|
biimpa |
|- ( ( F Fn ( Base ` D ) /\ m e. ( `' F " { z } ) ) -> ( m e. ( Base ` D ) /\ ( F ` m ) = z ) ) |
| 34 |
30 31 33
|
syl2anc |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( m e. ( Base ` D ) /\ ( F ` m ) = z ) ) |
| 35 |
34
|
simprd |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( F ` m ) = z ) |
| 36 |
|
simprr |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> n e. ( `' F " { w } ) ) |
| 37 |
|
fniniseg |
|- ( F Fn ( Base ` D ) -> ( n e. ( `' F " { w } ) <-> ( n e. ( Base ` D ) /\ ( F ` n ) = w ) ) ) |
| 38 |
37
|
biimpa |
|- ( ( F Fn ( Base ` D ) /\ n e. ( `' F " { w } ) ) -> ( n e. ( Base ` D ) /\ ( F ` n ) = w ) ) |
| 39 |
30 36 38
|
syl2anc |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( n e. ( Base ` D ) /\ ( F ` n ) = w ) ) |
| 40 |
39
|
simprd |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( F ` n ) = w ) |
| 41 |
35 40
|
oveq12d |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( ( F ` m ) ( Hom ` E ) ( F ` n ) ) = ( z ( Hom ` E ) w ) ) |
| 42 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
| 43 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> F ( D Full E ) G ) |
| 44 |
34
|
simpld |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> m e. ( Base ` D ) ) |
| 45 |
39
|
simpld |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> n e. ( Base ` D ) ) |
| 46 |
11 42 2 43 44 45
|
fullfo |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( m G n ) : ( m H n ) -onto-> ( ( F ` m ) ( Hom ` E ) ( F ` n ) ) ) |
| 47 |
|
foeq3 |
|- ( ( ( F ` m ) ( Hom ` E ) ( F ` n ) ) = ( z ( Hom ` E ) w ) -> ( ( m G n ) : ( m H n ) -onto-> ( ( F ` m ) ( Hom ` E ) ( F ` n ) ) <-> ( m G n ) : ( m H n ) -onto-> ( z ( Hom ` E ) w ) ) ) |
| 48 |
47
|
biimpa |
|- ( ( ( ( F ` m ) ( Hom ` E ) ( F ` n ) ) = ( z ( Hom ` E ) w ) /\ ( m G n ) : ( m H n ) -onto-> ( ( F ` m ) ( Hom ` E ) ( F ` n ) ) ) -> ( m G n ) : ( m H n ) -onto-> ( z ( Hom ` E ) w ) ) |
| 49 |
41 46 48
|
syl2anc |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( m G n ) : ( m H n ) -onto-> ( z ( Hom ` E ) w ) ) |
| 50 |
|
foima |
|- ( ( m G n ) : ( m H n ) -onto-> ( z ( Hom ` E ) w ) -> ( ( m G n ) " ( m H n ) ) = ( z ( Hom ` E ) w ) ) |
| 51 |
49 50
|
syl |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( ( m G n ) " ( m H n ) ) = ( z ( Hom ` E ) w ) ) |
| 52 |
51
|
ralrimivva |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> A. m e. ( `' F " { z } ) A. n e. ( `' F " { w } ) ( ( m G n ) " ( m H n ) ) = ( z ( Hom ` E ) w ) ) |
| 53 |
|
fveq2 |
|- ( p = <. m , n >. -> ( G ` p ) = ( G ` <. m , n >. ) ) |
| 54 |
|
df-ov |
|- ( m G n ) = ( G ` <. m , n >. ) |
| 55 |
53 54
|
eqtr4di |
|- ( p = <. m , n >. -> ( G ` p ) = ( m G n ) ) |
| 56 |
|
fveq2 |
|- ( p = <. m , n >. -> ( H ` p ) = ( H ` <. m , n >. ) ) |
| 57 |
|
df-ov |
|- ( m H n ) = ( H ` <. m , n >. ) |
| 58 |
56 57
|
eqtr4di |
|- ( p = <. m , n >. -> ( H ` p ) = ( m H n ) ) |
| 59 |
55 58
|
imaeq12d |
|- ( p = <. m , n >. -> ( ( G ` p ) " ( H ` p ) ) = ( ( m G n ) " ( m H n ) ) ) |
| 60 |
59
|
eqeq1d |
|- ( p = <. m , n >. -> ( ( ( G ` p ) " ( H ` p ) ) = ( z ( Hom ` E ) w ) <-> ( ( m G n ) " ( m H n ) ) = ( z ( Hom ` E ) w ) ) ) |
| 61 |
60
|
ralxp |
|- ( A. p e. ( ( `' F " { z } ) X. ( `' F " { w } ) ) ( ( G ` p ) " ( H ` p ) ) = ( z ( Hom ` E ) w ) <-> A. m e. ( `' F " { z } ) A. n e. ( `' F " { w } ) ( ( m G n ) " ( m H n ) ) = ( z ( Hom ` E ) w ) ) |
| 62 |
52 61
|
sylibr |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> A. p e. ( ( `' F " { z } ) X. ( `' F " { w } ) ) ( ( G ` p ) " ( H ` p ) ) = ( z ( Hom ` E ) w ) ) |
| 63 |
|
iuneqconst2 |
|- ( ( ( ( `' F " { z } ) X. ( `' F " { w } ) ) =/= (/) /\ A. p e. ( ( `' F " { z } ) X. ( `' F " { w } ) ) ( ( G ` p ) " ( H ` p ) ) = ( z ( Hom ` E ) w ) ) -> U_ p e. ( ( `' F " { z } ) X. ( `' F " { w } ) ) ( ( G ` p ) " ( H ` p ) ) = ( z ( Hom ` E ) w ) ) |
| 64 |
28 62 63
|
syl2anc |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> U_ p e. ( ( `' F " { z } ) X. ( `' F " { w } ) ) ( ( G ` p ) " ( H ` p ) ) = ( z ( Hom ` E ) w ) ) |
| 65 |
9
|
adantr |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> F e. _V ) |
| 66 |
65 65 18 22 3
|
imasubclem3 |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( z K w ) = U_ p e. ( ( `' F " { z } ) X. ( `' F " { w } ) ) ( ( G ` p ) " ( H ` p ) ) ) |
| 67 |
17
|
adantr |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> S C_ C ) |
| 68 |
67 18
|
sseldd |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> z e. C ) |
| 69 |
67 22
|
sseldd |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> w e. C ) |
| 70 |
6 5 42 68 69
|
homfval |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( z J w ) = ( z ( Hom ` E ) w ) ) |
| 71 |
64 66 70
|
3eqtr4rd |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( z J w ) = ( z K w ) ) |
| 72 |
71
|
ralrimivva |
|- ( ph -> A. z e. S A. w e. S ( z J w ) = ( z K w ) ) |
| 73 |
|
fveq2 |
|- ( q = <. z , w >. -> ( J ` q ) = ( J ` <. z , w >. ) ) |
| 74 |
|
df-ov |
|- ( z J w ) = ( J ` <. z , w >. ) |
| 75 |
73 74
|
eqtr4di |
|- ( q = <. z , w >. -> ( J ` q ) = ( z J w ) ) |
| 76 |
|
fveq2 |
|- ( q = <. z , w >. -> ( K ` q ) = ( K ` <. z , w >. ) ) |
| 77 |
|
df-ov |
|- ( z K w ) = ( K ` <. z , w >. ) |
| 78 |
76 77
|
eqtr4di |
|- ( q = <. z , w >. -> ( K ` q ) = ( z K w ) ) |
| 79 |
75 78
|
eqeq12d |
|- ( q = <. z , w >. -> ( ( J ` q ) = ( K ` q ) <-> ( z J w ) = ( z K w ) ) ) |
| 80 |
79
|
ralxp |
|- ( A. q e. ( S X. S ) ( J ` q ) = ( K ` q ) <-> A. z e. S A. w e. S ( z J w ) = ( z K w ) ) |
| 81 |
72 80
|
sylibr |
|- ( ph -> A. q e. ( S X. S ) ( J ` q ) = ( K ` q ) ) |
| 82 |
6 5
|
homffn |
|- J Fn ( C X. C ) |
| 83 |
82
|
a1i |
|- ( ph -> J Fn ( C X. C ) ) |
| 84 |
|
xpss12 |
|- ( ( S C_ C /\ S C_ C ) -> ( S X. S ) C_ ( C X. C ) ) |
| 85 |
17 17 84
|
syl2anc |
|- ( ph -> ( S X. S ) C_ ( C X. C ) ) |
| 86 |
|
fvreseq1 |
|- ( ( ( J Fn ( C X. C ) /\ K Fn ( S X. S ) ) /\ ( S X. S ) C_ ( C X. C ) ) -> ( ( J |` ( S X. S ) ) = K <-> A. q e. ( S X. S ) ( J ` q ) = ( K ` q ) ) ) |
| 87 |
83 10 85 86
|
syl21anc |
|- ( ph -> ( ( J |` ( S X. S ) ) = K <-> A. q e. ( S X. S ) ( J ` q ) = ( K ` q ) ) ) |
| 88 |
81 87
|
mpbird |
|- ( ph -> ( J |` ( S X. S ) ) = K ) |
| 89 |
10 17 88
|
3jca |
|- ( ph -> ( K Fn ( S X. S ) /\ S C_ C /\ ( J |` ( S X. S ) ) = K ) ) |