Metamath Proof Explorer


Theorem imasubclem3

Description: Lemma for imasubc . (Contributed by Zhi Wang, 7-Nov-2025)

Ref Expression
Hypotheses imasubclem1.f
|- ( ph -> F e. V )
imasubclem1.g
|- ( ph -> G e. W )
imasubclem3.x
|- ( ph -> X e. A )
imasubclem3.y
|- ( ph -> Y e. B )
imasubclem3.k
|- K = ( x e. A , y e. B |-> U_ z e. ( ( `' F " { x } ) X. ( `' G " { y } ) ) ( ( H ` C ) " D ) )
Assertion imasubclem3
|- ( ph -> ( X K Y ) = U_ z e. ( ( `' F " { X } ) X. ( `' G " { Y } ) ) ( ( H ` C ) " D ) )

Proof

Step Hyp Ref Expression
1 imasubclem1.f
 |-  ( ph -> F e. V )
2 imasubclem1.g
 |-  ( ph -> G e. W )
3 imasubclem3.x
 |-  ( ph -> X e. A )
4 imasubclem3.y
 |-  ( ph -> Y e. B )
5 imasubclem3.k
 |-  K = ( x e. A , y e. B |-> U_ z e. ( ( `' F " { x } ) X. ( `' G " { y } ) ) ( ( H ` C ) " D ) )
6 1 2 imasubclem1
 |-  ( ph -> U_ z e. ( ( `' F " { X } ) X. ( `' G " { Y } ) ) ( ( H ` C ) " D ) e. _V )
7 simpl
 |-  ( ( x = X /\ y = Y ) -> x = X )
8 7 sneqd
 |-  ( ( x = X /\ y = Y ) -> { x } = { X } )
9 8 imaeq2d
 |-  ( ( x = X /\ y = Y ) -> ( `' F " { x } ) = ( `' F " { X } ) )
10 simpr
 |-  ( ( x = X /\ y = Y ) -> y = Y )
11 10 sneqd
 |-  ( ( x = X /\ y = Y ) -> { y } = { Y } )
12 11 imaeq2d
 |-  ( ( x = X /\ y = Y ) -> ( `' G " { y } ) = ( `' G " { Y } ) )
13 9 12 xpeq12d
 |-  ( ( x = X /\ y = Y ) -> ( ( `' F " { x } ) X. ( `' G " { y } ) ) = ( ( `' F " { X } ) X. ( `' G " { Y } ) ) )
14 13 iuneq1d
 |-  ( ( x = X /\ y = Y ) -> U_ z e. ( ( `' F " { x } ) X. ( `' G " { y } ) ) ( ( H ` C ) " D ) = U_ z e. ( ( `' F " { X } ) X. ( `' G " { Y } ) ) ( ( H ` C ) " D ) )
15 14 5 ovmpoga
 |-  ( ( X e. A /\ Y e. B /\ U_ z e. ( ( `' F " { X } ) X. ( `' G " { Y } ) ) ( ( H ` C ) " D ) e. _V ) -> ( X K Y ) = U_ z e. ( ( `' F " { X } ) X. ( `' G " { Y } ) ) ( ( H ` C ) " D ) )
16 3 4 6 15 syl3anc
 |-  ( ph -> ( X K Y ) = U_ z e. ( ( `' F " { X } ) X. ( `' G " { Y } ) ) ( ( H ` C ) " D ) )