Metamath Proof Explorer


Theorem imasubclem1

Description: Lemma for imasubc . (Contributed by Zhi Wang, 6-Nov-2025)

Ref Expression
Hypotheses imasubclem1.f
|- ( ph -> F e. V )
imasubclem1.g
|- ( ph -> G e. W )
Assertion imasubclem1
|- ( ph -> U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V )

Proof

Step Hyp Ref Expression
1 imasubclem1.f
 |-  ( ph -> F e. V )
2 imasubclem1.g
 |-  ( ph -> G e. W )
3 cnvexg
 |-  ( F e. V -> `' F e. _V )
4 1 3 syl
 |-  ( ph -> `' F e. _V )
5 4 imaexd
 |-  ( ph -> ( `' F " A ) e. _V )
6 cnvexg
 |-  ( G e. W -> `' G e. _V )
7 2 6 syl
 |-  ( ph -> `' G e. _V )
8 7 imaexd
 |-  ( ph -> ( `' G " B ) e. _V )
9 5 8 xpexd
 |-  ( ph -> ( ( `' F " A ) X. ( `' G " B ) ) e. _V )
10 fvex
 |-  ( H ` C ) e. _V
11 10 imaex
 |-  ( ( H ` C ) " D ) e. _V
12 11 rgenw
 |-  A. x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V
13 iunexg
 |-  ( ( ( ( `' F " A ) X. ( `' G " B ) ) e. _V /\ A. x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V ) -> U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V )
14 9 12 13 sylancl
 |-  ( ph -> U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V )