| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubclem1.f |
|- ( ph -> F e. V ) |
| 2 |
|
imasubclem1.g |
|- ( ph -> G e. W ) |
| 3 |
|
cnvexg |
|- ( F e. V -> `' F e. _V ) |
| 4 |
1 3
|
syl |
|- ( ph -> `' F e. _V ) |
| 5 |
4
|
imaexd |
|- ( ph -> ( `' F " A ) e. _V ) |
| 6 |
|
cnvexg |
|- ( G e. W -> `' G e. _V ) |
| 7 |
2 6
|
syl |
|- ( ph -> `' G e. _V ) |
| 8 |
7
|
imaexd |
|- ( ph -> ( `' G " B ) e. _V ) |
| 9 |
5 8
|
xpexd |
|- ( ph -> ( ( `' F " A ) X. ( `' G " B ) ) e. _V ) |
| 10 |
|
fvex |
|- ( H ` C ) e. _V |
| 11 |
10
|
imaex |
|- ( ( H ` C ) " D ) e. _V |
| 12 |
11
|
rgenw |
|- A. x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V |
| 13 |
|
iunexg |
|- ( ( ( ( `' F " A ) X. ( `' G " B ) ) e. _V /\ A. x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V ) -> U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V ) |
| 14 |
9 12 13
|
sylancl |
|- ( ph -> U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V ) |