Metamath Proof Explorer


Theorem imasubclem1

Description: Lemma for imasubc . (Contributed by Zhi Wang, 6-Nov-2025)

Ref Expression
Hypotheses imasubclem1.f φ F V
imasubclem1.g φ G W
Assertion imasubclem1 φ x F -1 A × G -1 B H C D V

Proof

Step Hyp Ref Expression
1 imasubclem1.f φ F V
2 imasubclem1.g φ G W
3 cnvexg F V F -1 V
4 1 3 syl φ F -1 V
5 4 imaexd φ F -1 A V
6 cnvexg G W G -1 V
7 2 6 syl φ G -1 V
8 7 imaexd φ G -1 B V
9 5 8 xpexd φ F -1 A × G -1 B V
10 fvex H C V
11 10 imaex H C D V
12 11 rgenw x F -1 A × G -1 B H C D V
13 iunexg F -1 A × G -1 B V x F -1 A × G -1 B H C D V x F -1 A × G -1 B H C D V
14 9 12 13 sylancl φ x F -1 A × G -1 B H C D V