Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Full & faithful functors
imasubclem2
Next ⟩
imasubclem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
imasubclem2
Description:
Lemma for
imasubc
.
(Contributed by
Zhi Wang
, 7-Nov-2025)
Ref
Expression
Hypotheses
imasubclem1.f
⊢
φ
→
F
∈
V
imasubclem1.g
⊢
φ
→
G
∈
W
imasubclem2.k
⊢
K
=
y
∈
X
,
z
∈
Y
⟼
⋃
x
∈
F
-1
A
×
G
-1
B
H
⁡
C
D
Assertion
imasubclem2
⊢
φ
→
K
Fn
X
×
Y
Proof
Step
Hyp
Ref
Expression
1
imasubclem1.f
⊢
φ
→
F
∈
V
2
imasubclem1.g
⊢
φ
→
G
∈
W
3
imasubclem2.k
⊢
K
=
y
∈
X
,
z
∈
Y
⟼
⋃
x
∈
F
-1
A
×
G
-1
B
H
⁡
C
D
4
1
2
imasubclem1
⊢
φ
→
⋃
x
∈
F
-1
A
×
G
-1
B
H
⁡
C
D
∈
V
5
4
adantr
⊢
φ
∧
y
∈
X
∧
z
∈
Y
→
⋃
x
∈
F
-1
A
×
G
-1
B
H
⁡
C
D
∈
V
6
5
ralrimivva
⊢
φ
→
∀
y
∈
X
∀
z
∈
Y
⋃
x
∈
F
-1
A
×
G
-1
B
H
⁡
C
D
∈
V
7
3
fnmpo
⊢
∀
y
∈
X
∀
z
∈
Y
⋃
x
∈
F
-1
A
×
G
-1
B
H
⁡
C
D
∈
V
→
K
Fn
X
×
Y
8
6
7
syl
⊢
φ
→
K
Fn
X
×
Y