Metamath Proof Explorer


Theorem imasubclem2

Description: Lemma for imasubc . (Contributed by Zhi Wang, 7-Nov-2025)

Ref Expression
Hypotheses imasubclem1.f
|- ( ph -> F e. V )
imasubclem1.g
|- ( ph -> G e. W )
imasubclem2.k
|- K = ( y e. X , z e. Y |-> U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) )
Assertion imasubclem2
|- ( ph -> K Fn ( X X. Y ) )

Proof

Step Hyp Ref Expression
1 imasubclem1.f
 |-  ( ph -> F e. V )
2 imasubclem1.g
 |-  ( ph -> G e. W )
3 imasubclem2.k
 |-  K = ( y e. X , z e. Y |-> U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) )
4 1 2 imasubclem1
 |-  ( ph -> U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V )
5 4 adantr
 |-  ( ( ph /\ ( y e. X /\ z e. Y ) ) -> U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V )
6 5 ralrimivva
 |-  ( ph -> A. y e. X A. z e. Y U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V )
7 3 fnmpo
 |-  ( A. y e. X A. z e. Y U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V -> K Fn ( X X. Y ) )
8 6 7 syl
 |-  ( ph -> K Fn ( X X. Y ) )