Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fmpo.1 | |- F = ( x e. A , y e. B |-> C ) |
|
Assertion | fnmpo | |- ( A. x e. A A. y e. B C e. V -> F Fn ( A X. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpo.1 | |- F = ( x e. A , y e. B |-> C ) |
|
2 | elex | |- ( C e. V -> C e. _V ) |
|
3 | 2 | 2ralimi | |- ( A. x e. A A. y e. B C e. V -> A. x e. A A. y e. B C e. _V ) |
4 | 1 | fmpo | |- ( A. x e. A A. y e. B C e. _V <-> F : ( A X. B ) --> _V ) |
5 | dffn2 | |- ( F Fn ( A X. B ) <-> F : ( A X. B ) --> _V ) |
|
6 | 4 5 | bitr4i | |- ( A. x e. A A. y e. B C e. _V <-> F Fn ( A X. B ) ) |
7 | 3 6 | sylib | |- ( A. x e. A A. y e. B C e. V -> F Fn ( A X. B ) ) |