| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elimag |
|- ( A e. ( F " B ) -> ( A e. ( F " B ) <-> E. x e. B x F A ) ) |
| 2 |
1
|
ibi |
|- ( A e. ( F " B ) -> E. x e. B x F A ) |
| 3 |
|
vex |
|- x e. _V |
| 4 |
3
|
eliniseg |
|- ( A e. ( F " B ) -> ( x e. ( `' F " { A } ) <-> x F A ) ) |
| 5 |
|
ne0i |
|- ( x e. ( `' F " { A } ) -> ( `' F " { A } ) =/= (/) ) |
| 6 |
4 5
|
biimtrrdi |
|- ( A e. ( F " B ) -> ( x F A -> ( `' F " { A } ) =/= (/) ) ) |
| 7 |
6
|
rexlimdvw |
|- ( A e. ( F " B ) -> ( E. x e. B x F A -> ( `' F " { A } ) =/= (/) ) ) |
| 8 |
2 7
|
mpd |
|- ( A e. ( F " B ) -> ( `' F " { A } ) =/= (/) ) |