Metamath Proof Explorer


Theorem inisegn0a

Description: The inverse image of a singleton subset of an image is non-empty. (Contributed by Zhi Wang, 7-Nov-2025)

Ref Expression
Assertion inisegn0a A F B F -1 A

Proof

Step Hyp Ref Expression
1 elimag A F B A F B x B x F A
2 1 ibi A F B x B x F A
3 vex x V
4 3 eliniseg A F B x F -1 A x F A
5 ne0i x F -1 A F -1 A
6 4 5 biimtrrdi A F B x F A F -1 A
7 6 rexlimdvw A F B x B x F A F -1 A
8 2 7 mpd A F B F -1 A