| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|
| 2 |
|
simpr |
|
| 3 |
|
nne |
|
| 4 |
2 3
|
sylib |
|
| 5 |
4
|
xpeq1d |
|
| 6 |
|
0xp |
|
| 7 |
5 6
|
eqtrdi |
|
| 8 |
1 7
|
eqtrd |
|
| 9 |
8
|
dmeqd |
|
| 10 |
|
dm0 |
|
| 11 |
9 10
|
eqtrdi |
|
| 12 |
8
|
rneqd |
|
| 13 |
|
rn0 |
|
| 14 |
12 13
|
eqtrdi |
|
| 15 |
11 14
|
xpeq12d |
|
| 16 |
|
0xp |
|
| 17 |
15 16
|
eqtrdi |
|
| 18 |
8 17
|
eqtr4d |
|
| 19 |
|
simpl |
|
| 20 |
|
simpr |
|
| 21 |
|
nne |
|
| 22 |
20 21
|
sylib |
|
| 23 |
22
|
xpeq2d |
|
| 24 |
|
xp0 |
|
| 25 |
23 24
|
eqtrdi |
|
| 26 |
19 25
|
eqtrd |
|
| 27 |
26
|
dmeqd |
|
| 28 |
27 10
|
eqtrdi |
|
| 29 |
26
|
rneqd |
|
| 30 |
29 13
|
eqtrdi |
|
| 31 |
28 30
|
xpeq12d |
|
| 32 |
31 16
|
eqtrdi |
|
| 33 |
26 32
|
eqtr4d |
|
| 34 |
|
simpl |
|
| 35 |
34
|
dmeqd |
|
| 36 |
|
dmxp |
|
| 37 |
36
|
ad2antll |
|
| 38 |
35 37
|
eqtrd |
|
| 39 |
34
|
rneqd |
|
| 40 |
|
rnxp |
|
| 41 |
40
|
ad2antrl |
|
| 42 |
39 41
|
eqtrd |
|
| 43 |
38 42
|
xpeq12d |
|
| 44 |
34 43
|
eqtr4d |
|
| 45 |
18 33 44
|
pm2.61dda |
|