| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( R = ( A X. B ) /\ -. A =/= (/) ) -> R = ( A X. B ) ) |
| 2 |
|
simpr |
|- ( ( R = ( A X. B ) /\ -. A =/= (/) ) -> -. A =/= (/) ) |
| 3 |
|
nne |
|- ( -. A =/= (/) <-> A = (/) ) |
| 4 |
2 3
|
sylib |
|- ( ( R = ( A X. B ) /\ -. A =/= (/) ) -> A = (/) ) |
| 5 |
4
|
xpeq1d |
|- ( ( R = ( A X. B ) /\ -. A =/= (/) ) -> ( A X. B ) = ( (/) X. B ) ) |
| 6 |
|
0xp |
|- ( (/) X. B ) = (/) |
| 7 |
5 6
|
eqtrdi |
|- ( ( R = ( A X. B ) /\ -. A =/= (/) ) -> ( A X. B ) = (/) ) |
| 8 |
1 7
|
eqtrd |
|- ( ( R = ( A X. B ) /\ -. A =/= (/) ) -> R = (/) ) |
| 9 |
8
|
dmeqd |
|- ( ( R = ( A X. B ) /\ -. A =/= (/) ) -> dom R = dom (/) ) |
| 10 |
|
dm0 |
|- dom (/) = (/) |
| 11 |
9 10
|
eqtrdi |
|- ( ( R = ( A X. B ) /\ -. A =/= (/) ) -> dom R = (/) ) |
| 12 |
8
|
rneqd |
|- ( ( R = ( A X. B ) /\ -. A =/= (/) ) -> ran R = ran (/) ) |
| 13 |
|
rn0 |
|- ran (/) = (/) |
| 14 |
12 13
|
eqtrdi |
|- ( ( R = ( A X. B ) /\ -. A =/= (/) ) -> ran R = (/) ) |
| 15 |
11 14
|
xpeq12d |
|- ( ( R = ( A X. B ) /\ -. A =/= (/) ) -> ( dom R X. ran R ) = ( (/) X. (/) ) ) |
| 16 |
|
0xp |
|- ( (/) X. (/) ) = (/) |
| 17 |
15 16
|
eqtrdi |
|- ( ( R = ( A X. B ) /\ -. A =/= (/) ) -> ( dom R X. ran R ) = (/) ) |
| 18 |
8 17
|
eqtr4d |
|- ( ( R = ( A X. B ) /\ -. A =/= (/) ) -> R = ( dom R X. ran R ) ) |
| 19 |
|
simpl |
|- ( ( R = ( A X. B ) /\ -. B =/= (/) ) -> R = ( A X. B ) ) |
| 20 |
|
simpr |
|- ( ( R = ( A X. B ) /\ -. B =/= (/) ) -> -. B =/= (/) ) |
| 21 |
|
nne |
|- ( -. B =/= (/) <-> B = (/) ) |
| 22 |
20 21
|
sylib |
|- ( ( R = ( A X. B ) /\ -. B =/= (/) ) -> B = (/) ) |
| 23 |
22
|
xpeq2d |
|- ( ( R = ( A X. B ) /\ -. B =/= (/) ) -> ( A X. B ) = ( A X. (/) ) ) |
| 24 |
|
xp0 |
|- ( A X. (/) ) = (/) |
| 25 |
23 24
|
eqtrdi |
|- ( ( R = ( A X. B ) /\ -. B =/= (/) ) -> ( A X. B ) = (/) ) |
| 26 |
19 25
|
eqtrd |
|- ( ( R = ( A X. B ) /\ -. B =/= (/) ) -> R = (/) ) |
| 27 |
26
|
dmeqd |
|- ( ( R = ( A X. B ) /\ -. B =/= (/) ) -> dom R = dom (/) ) |
| 28 |
27 10
|
eqtrdi |
|- ( ( R = ( A X. B ) /\ -. B =/= (/) ) -> dom R = (/) ) |
| 29 |
26
|
rneqd |
|- ( ( R = ( A X. B ) /\ -. B =/= (/) ) -> ran R = ran (/) ) |
| 30 |
29 13
|
eqtrdi |
|- ( ( R = ( A X. B ) /\ -. B =/= (/) ) -> ran R = (/) ) |
| 31 |
28 30
|
xpeq12d |
|- ( ( R = ( A X. B ) /\ -. B =/= (/) ) -> ( dom R X. ran R ) = ( (/) X. (/) ) ) |
| 32 |
31 16
|
eqtrdi |
|- ( ( R = ( A X. B ) /\ -. B =/= (/) ) -> ( dom R X. ran R ) = (/) ) |
| 33 |
26 32
|
eqtr4d |
|- ( ( R = ( A X. B ) /\ -. B =/= (/) ) -> R = ( dom R X. ran R ) ) |
| 34 |
|
simpl |
|- ( ( R = ( A X. B ) /\ ( A =/= (/) /\ B =/= (/) ) ) -> R = ( A X. B ) ) |
| 35 |
34
|
dmeqd |
|- ( ( R = ( A X. B ) /\ ( A =/= (/) /\ B =/= (/) ) ) -> dom R = dom ( A X. B ) ) |
| 36 |
|
dmxp |
|- ( B =/= (/) -> dom ( A X. B ) = A ) |
| 37 |
36
|
ad2antll |
|- ( ( R = ( A X. B ) /\ ( A =/= (/) /\ B =/= (/) ) ) -> dom ( A X. B ) = A ) |
| 38 |
35 37
|
eqtrd |
|- ( ( R = ( A X. B ) /\ ( A =/= (/) /\ B =/= (/) ) ) -> dom R = A ) |
| 39 |
34
|
rneqd |
|- ( ( R = ( A X. B ) /\ ( A =/= (/) /\ B =/= (/) ) ) -> ran R = ran ( A X. B ) ) |
| 40 |
|
rnxp |
|- ( A =/= (/) -> ran ( A X. B ) = B ) |
| 41 |
40
|
ad2antrl |
|- ( ( R = ( A X. B ) /\ ( A =/= (/) /\ B =/= (/) ) ) -> ran ( A X. B ) = B ) |
| 42 |
39 41
|
eqtrd |
|- ( ( R = ( A X. B ) /\ ( A =/= (/) /\ B =/= (/) ) ) -> ran R = B ) |
| 43 |
38 42
|
xpeq12d |
|- ( ( R = ( A X. B ) /\ ( A =/= (/) /\ B =/= (/) ) ) -> ( dom R X. ran R ) = ( A X. B ) ) |
| 44 |
34 43
|
eqtr4d |
|- ( ( R = ( A X. B ) /\ ( A =/= (/) /\ B =/= (/) ) ) -> R = ( dom R X. ran R ) ) |
| 45 |
18 33 44
|
pm2.61dda |
|- ( R = ( A X. B ) -> R = ( dom R X. ran R ) ) |