Metamath Proof Explorer


Theorem inisegn0a

Description: The inverse image of a singleton subset of an image is non-empty. (Contributed by Zhi Wang, 7-Nov-2025)

Ref Expression
Assertion inisegn0a ( 𝐴 ∈ ( 𝐹𝐵 ) → ( 𝐹 “ { 𝐴 } ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 elimag ( 𝐴 ∈ ( 𝐹𝐵 ) → ( 𝐴 ∈ ( 𝐹𝐵 ) ↔ ∃ 𝑥𝐵 𝑥 𝐹 𝐴 ) )
2 1 ibi ( 𝐴 ∈ ( 𝐹𝐵 ) → ∃ 𝑥𝐵 𝑥 𝐹 𝐴 )
3 vex 𝑥 ∈ V
4 3 eliniseg ( 𝐴 ∈ ( 𝐹𝐵 ) → ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) ↔ 𝑥 𝐹 𝐴 ) )
5 ne0i ( 𝑥 ∈ ( 𝐹 “ { 𝐴 } ) → ( 𝐹 “ { 𝐴 } ) ≠ ∅ )
6 4 5 biimtrrdi ( 𝐴 ∈ ( 𝐹𝐵 ) → ( 𝑥 𝐹 𝐴 → ( 𝐹 “ { 𝐴 } ) ≠ ∅ ) )
7 6 rexlimdvw ( 𝐴 ∈ ( 𝐹𝐵 ) → ( ∃ 𝑥𝐵 𝑥 𝐹 𝐴 → ( 𝐹 “ { 𝐴 } ) ≠ ∅ ) )
8 2 7 mpd ( 𝐴 ∈ ( 𝐹𝐵 ) → ( 𝐹 “ { 𝐴 } ) ≠ ∅ )