Description: The inverse image of a singleton subset of an image is non-empty. (Contributed by Zhi Wang, 7-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inisegn0a | ⊢ ( 𝐴 ∈ ( 𝐹 “ 𝐵 ) → ( ◡ 𝐹 “ { 𝐴 } ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimag | ⊢ ( 𝐴 ∈ ( 𝐹 “ 𝐵 ) → ( 𝐴 ∈ ( 𝐹 “ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐵 𝑥 𝐹 𝐴 ) ) | |
| 2 | 1 | ibi | ⊢ ( 𝐴 ∈ ( 𝐹 “ 𝐵 ) → ∃ 𝑥 ∈ 𝐵 𝑥 𝐹 𝐴 ) |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | 3 | eliniseg | ⊢ ( 𝐴 ∈ ( 𝐹 “ 𝐵 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝐴 } ) ↔ 𝑥 𝐹 𝐴 ) ) |
| 5 | ne0i | ⊢ ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝐴 } ) → ( ◡ 𝐹 “ { 𝐴 } ) ≠ ∅ ) | |
| 6 | 4 5 | biimtrrdi | ⊢ ( 𝐴 ∈ ( 𝐹 “ 𝐵 ) → ( 𝑥 𝐹 𝐴 → ( ◡ 𝐹 “ { 𝐴 } ) ≠ ∅ ) ) |
| 7 | 6 | rexlimdvw | ⊢ ( 𝐴 ∈ ( 𝐹 “ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐵 𝑥 𝐹 𝐴 → ( ◡ 𝐹 “ { 𝐴 } ) ≠ ∅ ) ) |
| 8 | 2 7 | mpd | ⊢ ( 𝐴 ∈ ( 𝐹 “ 𝐵 ) → ( ◡ 𝐹 “ { 𝐴 } ) ≠ ∅ ) |