Description: Membership in an image. Theorem 34 of Suppes p. 65. (Contributed by NM, 20-Jan-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | elimag | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ( 𝐵 “ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐶 𝑥 𝐵 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 𝐵 𝑦 ↔ 𝑥 𝐵 𝐴 ) ) | |
2 | 1 | rexbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ 𝐶 𝑥 𝐵 𝑦 ↔ ∃ 𝑥 ∈ 𝐶 𝑥 𝐵 𝐴 ) ) |
3 | dfima2 | ⊢ ( 𝐵 “ 𝐶 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐶 𝑥 𝐵 𝑦 } | |
4 | 2 3 | elab2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ( 𝐵 “ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐶 𝑥 𝐵 𝐴 ) ) |