Metamath Proof Explorer


Theorem elimag

Description: Membership in an image. Theorem 34 of Suppes p. 65. (Contributed by NM, 20-Jan-2007)

Ref Expression
Assertion elimag ( 𝐴𝑉 → ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ∃ 𝑥𝐶 𝑥 𝐵 𝐴 ) )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝑦 = 𝐴 → ( 𝑥 𝐵 𝑦𝑥 𝐵 𝐴 ) )
2 1 rexbidv ( 𝑦 = 𝐴 → ( ∃ 𝑥𝐶 𝑥 𝐵 𝑦 ↔ ∃ 𝑥𝐶 𝑥 𝐵 𝐴 ) )
3 dfima2 ( 𝐵𝐶 ) = { 𝑦 ∣ ∃ 𝑥𝐶 𝑥 𝐵 𝑦 }
4 2 3 elab2g ( 𝐴𝑉 → ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ∃ 𝑥𝐶 𝑥 𝐵 𝐴 ) )