| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubc.s |
|- S = ( F " A ) |
| 2 |
|
imasubc.h |
|- H = ( Hom ` D ) |
| 3 |
|
imasubc.k |
|- K = ( x e. S , y e. S |-> U_ p e. ( ( `' F " { x } ) X. ( `' F " { y } ) ) ( ( G ` p ) " ( H ` p ) ) ) |
| 4 |
|
imasubc.f |
|- ( ph -> F ( D Full E ) G ) |
| 5 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 6 |
|
eqid |
|- ( Homf ` E ) = ( Homf ` E ) |
| 7 |
1 2 3 4 5 6
|
imasubc |
|- ( ph -> ( K Fn ( S X. S ) /\ S C_ ( Base ` E ) /\ ( ( Homf ` E ) |` ( S X. S ) ) = K ) ) |
| 8 |
7
|
simp3d |
|- ( ph -> ( ( Homf ` E ) |` ( S X. S ) ) = K ) |
| 9 |
|
fullfunc |
|- ( D Full E ) C_ ( D Func E ) |
| 10 |
9
|
ssbri |
|- ( F ( D Full E ) G -> F ( D Func E ) G ) |
| 11 |
4 10
|
syl |
|- ( ph -> F ( D Func E ) G ) |
| 12 |
11
|
funcrcl3 |
|- ( ph -> E e. Cat ) |
| 13 |
7
|
simp2d |
|- ( ph -> S C_ ( Base ` E ) ) |
| 14 |
5 6 12 13
|
fullsubc |
|- ( ph -> ( ( Homf ` E ) |` ( S X. S ) ) e. ( Subcat ` E ) ) |
| 15 |
8 14
|
eqeltrrd |
|- ( ph -> K e. ( Subcat ` E ) ) |