| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubc.s |
|- S = ( F " A ) |
| 2 |
|
imasubc.h |
|- H = ( Hom ` D ) |
| 3 |
|
imasubc.k |
|- K = ( x e. S , y e. S |-> U_ p e. ( ( `' F " { x } ) X. ( `' F " { y } ) ) ( ( G ` p ) " ( H ` p ) ) ) |
| 4 |
|
imassc.f |
|- ( ph -> F ( D Func E ) G ) |
| 5 |
|
imassc.j |
|- J = ( Homf ` E ) |
| 6 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 7 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 8 |
6 7 4
|
funcf1 |
|- ( ph -> F : ( Base ` D ) --> ( Base ` E ) ) |
| 9 |
8
|
fimassd |
|- ( ph -> ( F " A ) C_ ( Base ` E ) ) |
| 10 |
1 9
|
eqsstrid |
|- ( ph -> S C_ ( Base ` E ) ) |
| 11 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
| 12 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> F ( D Func E ) G ) |
| 13 |
6 7 12
|
funcf1 |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> F : ( Base ` D ) --> ( Base ` E ) ) |
| 14 |
13
|
ffnd |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> F Fn ( Base ` D ) ) |
| 15 |
|
simprl |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> m e. ( `' F " { z } ) ) |
| 16 |
|
fniniseg |
|- ( F Fn ( Base ` D ) -> ( m e. ( `' F " { z } ) <-> ( m e. ( Base ` D ) /\ ( F ` m ) = z ) ) ) |
| 17 |
16
|
biimpa |
|- ( ( F Fn ( Base ` D ) /\ m e. ( `' F " { z } ) ) -> ( m e. ( Base ` D ) /\ ( F ` m ) = z ) ) |
| 18 |
14 15 17
|
syl2anc |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( m e. ( Base ` D ) /\ ( F ` m ) = z ) ) |
| 19 |
18
|
simpld |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> m e. ( Base ` D ) ) |
| 20 |
|
simprr |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> n e. ( `' F " { w } ) ) |
| 21 |
|
fniniseg |
|- ( F Fn ( Base ` D ) -> ( n e. ( `' F " { w } ) <-> ( n e. ( Base ` D ) /\ ( F ` n ) = w ) ) ) |
| 22 |
21
|
biimpa |
|- ( ( F Fn ( Base ` D ) /\ n e. ( `' F " { w } ) ) -> ( n e. ( Base ` D ) /\ ( F ` n ) = w ) ) |
| 23 |
14 20 22
|
syl2anc |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( n e. ( Base ` D ) /\ ( F ` n ) = w ) ) |
| 24 |
23
|
simpld |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> n e. ( Base ` D ) ) |
| 25 |
6 2 11 12 19 24
|
funcf2 |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( m G n ) : ( m H n ) --> ( ( F ` m ) ( Hom ` E ) ( F ` n ) ) ) |
| 26 |
25
|
fimassd |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( ( m G n ) " ( m H n ) ) C_ ( ( F ` m ) ( Hom ` E ) ( F ` n ) ) ) |
| 27 |
18
|
simprd |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( F ` m ) = z ) |
| 28 |
23
|
simprd |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( F ` n ) = w ) |
| 29 |
27 28
|
oveq12d |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( ( F ` m ) ( Hom ` E ) ( F ` n ) ) = ( z ( Hom ` E ) w ) ) |
| 30 |
26 29
|
sseqtrd |
|- ( ( ( ph /\ ( z e. S /\ w e. S ) ) /\ ( m e. ( `' F " { z } ) /\ n e. ( `' F " { w } ) ) ) -> ( ( m G n ) " ( m H n ) ) C_ ( z ( Hom ` E ) w ) ) |
| 31 |
30
|
ralrimivva |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> A. m e. ( `' F " { z } ) A. n e. ( `' F " { w } ) ( ( m G n ) " ( m H n ) ) C_ ( z ( Hom ` E ) w ) ) |
| 32 |
|
iunss |
|- ( U_ p e. ( ( `' F " { z } ) X. ( `' F " { w } ) ) ( ( G ` p ) " ( H ` p ) ) C_ ( z ( Hom ` E ) w ) <-> A. p e. ( ( `' F " { z } ) X. ( `' F " { w } ) ) ( ( G ` p ) " ( H ` p ) ) C_ ( z ( Hom ` E ) w ) ) |
| 33 |
|
fveq2 |
|- ( p = <. m , n >. -> ( G ` p ) = ( G ` <. m , n >. ) ) |
| 34 |
|
df-ov |
|- ( m G n ) = ( G ` <. m , n >. ) |
| 35 |
33 34
|
eqtr4di |
|- ( p = <. m , n >. -> ( G ` p ) = ( m G n ) ) |
| 36 |
|
fveq2 |
|- ( p = <. m , n >. -> ( H ` p ) = ( H ` <. m , n >. ) ) |
| 37 |
|
df-ov |
|- ( m H n ) = ( H ` <. m , n >. ) |
| 38 |
36 37
|
eqtr4di |
|- ( p = <. m , n >. -> ( H ` p ) = ( m H n ) ) |
| 39 |
35 38
|
imaeq12d |
|- ( p = <. m , n >. -> ( ( G ` p ) " ( H ` p ) ) = ( ( m G n ) " ( m H n ) ) ) |
| 40 |
39
|
sseq1d |
|- ( p = <. m , n >. -> ( ( ( G ` p ) " ( H ` p ) ) C_ ( z ( Hom ` E ) w ) <-> ( ( m G n ) " ( m H n ) ) C_ ( z ( Hom ` E ) w ) ) ) |
| 41 |
40
|
ralxp |
|- ( A. p e. ( ( `' F " { z } ) X. ( `' F " { w } ) ) ( ( G ` p ) " ( H ` p ) ) C_ ( z ( Hom ` E ) w ) <-> A. m e. ( `' F " { z } ) A. n e. ( `' F " { w } ) ( ( m G n ) " ( m H n ) ) C_ ( z ( Hom ` E ) w ) ) |
| 42 |
32 41
|
bitri |
|- ( U_ p e. ( ( `' F " { z } ) X. ( `' F " { w } ) ) ( ( G ` p ) " ( H ` p ) ) C_ ( z ( Hom ` E ) w ) <-> A. m e. ( `' F " { z } ) A. n e. ( `' F " { w } ) ( ( m G n ) " ( m H n ) ) C_ ( z ( Hom ` E ) w ) ) |
| 43 |
31 42
|
sylibr |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> U_ p e. ( ( `' F " { z } ) X. ( `' F " { w } ) ) ( ( G ` p ) " ( H ` p ) ) C_ ( z ( Hom ` E ) w ) ) |
| 44 |
|
relfunc |
|- Rel ( D Func E ) |
| 45 |
44
|
brrelex1i |
|- ( F ( D Func E ) G -> F e. _V ) |
| 46 |
4 45
|
syl |
|- ( ph -> F e. _V ) |
| 47 |
46
|
adantr |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> F e. _V ) |
| 48 |
|
simprl |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> z e. S ) |
| 49 |
|
simprr |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> w e. S ) |
| 50 |
47 47 48 49 3
|
imasubclem3 |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( z K w ) = U_ p e. ( ( `' F " { z } ) X. ( `' F " { w } ) ) ( ( G ` p ) " ( H ` p ) ) ) |
| 51 |
10
|
adantr |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> S C_ ( Base ` E ) ) |
| 52 |
51 48
|
sseldd |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> z e. ( Base ` E ) ) |
| 53 |
51 49
|
sseldd |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> w e. ( Base ` E ) ) |
| 54 |
5 7 11 52 53
|
homfval |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( z J w ) = ( z ( Hom ` E ) w ) ) |
| 55 |
43 50 54
|
3sstr4d |
|- ( ( ph /\ ( z e. S /\ w e. S ) ) -> ( z K w ) C_ ( z J w ) ) |
| 56 |
55
|
ralrimivva |
|- ( ph -> A. z e. S A. w e. S ( z K w ) C_ ( z J w ) ) |
| 57 |
46 46 3
|
imasubclem2 |
|- ( ph -> K Fn ( S X. S ) ) |
| 58 |
5 7
|
homffn |
|- J Fn ( ( Base ` E ) X. ( Base ` E ) ) |
| 59 |
58
|
a1i |
|- ( ph -> J Fn ( ( Base ` E ) X. ( Base ` E ) ) ) |
| 60 |
|
fvexd |
|- ( ph -> ( Base ` E ) e. _V ) |
| 61 |
57 59 60
|
isssc |
|- ( ph -> ( K C_cat J <-> ( S C_ ( Base ` E ) /\ A. z e. S A. w e. S ( z K w ) C_ ( z J w ) ) ) ) |
| 62 |
10 56 61
|
mpbir2and |
|- ( ph -> K C_cat J ) |