| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubc.s |
⊢ 𝑆 = ( 𝐹 “ 𝐴 ) |
| 2 |
|
imasubc.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
| 3 |
|
imasubc.k |
⊢ 𝐾 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑥 } ) × ( ◡ 𝐹 “ { 𝑦 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) |
| 4 |
|
imassc.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 5 |
|
imassc.j |
⊢ 𝐽 = ( Homf ‘ 𝐸 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 8 |
6 7 4
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) ) |
| 9 |
8
|
fimassd |
⊢ ( 𝜑 → ( 𝐹 “ 𝐴 ) ⊆ ( Base ‘ 𝐸 ) ) |
| 10 |
1 9
|
eqsstrid |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐸 ) ) |
| 11 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
| 12 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 13 |
6 7 12
|
funcf1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → 𝐹 : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) ) |
| 14 |
13
|
ffnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → 𝐹 Fn ( Base ‘ 𝐷 ) ) |
| 15 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ) |
| 16 |
|
fniniseg |
⊢ ( 𝐹 Fn ( Base ‘ 𝐷 ) → ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ↔ ( 𝑚 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑚 ) = 𝑧 ) ) ) |
| 17 |
16
|
biimpa |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝐷 ) ∧ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ) → ( 𝑚 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑚 ) = 𝑧 ) ) |
| 18 |
14 15 17
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( 𝑚 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑚 ) = 𝑧 ) ) |
| 19 |
18
|
simpld |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → 𝑚 ∈ ( Base ‘ 𝐷 ) ) |
| 20 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) |
| 21 |
|
fniniseg |
⊢ ( 𝐹 Fn ( Base ‘ 𝐷 ) → ( 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ↔ ( 𝑛 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑤 ) ) ) |
| 22 |
21
|
biimpa |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝐷 ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) → ( 𝑛 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑤 ) ) |
| 23 |
14 20 22
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( 𝑛 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑛 ) = 𝑤 ) ) |
| 24 |
23
|
simpld |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → 𝑛 ∈ ( Base ‘ 𝐷 ) ) |
| 25 |
6 2 11 12 19 24
|
funcf2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( 𝑚 𝐺 𝑛 ) : ( 𝑚 𝐻 𝑛 ) ⟶ ( ( 𝐹 ‘ 𝑚 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑛 ) ) ) |
| 26 |
25
|
fimassd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( ( 𝑚 𝐺 𝑛 ) “ ( 𝑚 𝐻 𝑛 ) ) ⊆ ( ( 𝐹 ‘ 𝑚 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑛 ) ) ) |
| 27 |
18
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( 𝐹 ‘ 𝑚 ) = 𝑧 ) |
| 28 |
23
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( 𝐹 ‘ 𝑛 ) = 𝑤 ) |
| 29 |
27 28
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( ( 𝐹 ‘ 𝑚 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 30 |
26 29
|
sseqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) ∧ ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( ( 𝑚 𝐺 𝑛 ) “ ( 𝑚 𝐻 𝑛 ) ) ⊆ ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 31 |
30
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ∀ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∀ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ( ( 𝑚 𝐺 𝑛 ) “ ( 𝑚 𝐻 𝑛 ) ) ⊆ ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 32 |
|
iunss |
⊢ ( ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ⊆ ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ↔ ∀ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ⊆ ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 33 |
|
fveq2 |
⊢ ( 𝑝 = 〈 𝑚 , 𝑛 〉 → ( 𝐺 ‘ 𝑝 ) = ( 𝐺 ‘ 〈 𝑚 , 𝑛 〉 ) ) |
| 34 |
|
df-ov |
⊢ ( 𝑚 𝐺 𝑛 ) = ( 𝐺 ‘ 〈 𝑚 , 𝑛 〉 ) |
| 35 |
33 34
|
eqtr4di |
⊢ ( 𝑝 = 〈 𝑚 , 𝑛 〉 → ( 𝐺 ‘ 𝑝 ) = ( 𝑚 𝐺 𝑛 ) ) |
| 36 |
|
fveq2 |
⊢ ( 𝑝 = 〈 𝑚 , 𝑛 〉 → ( 𝐻 ‘ 𝑝 ) = ( 𝐻 ‘ 〈 𝑚 , 𝑛 〉 ) ) |
| 37 |
|
df-ov |
⊢ ( 𝑚 𝐻 𝑛 ) = ( 𝐻 ‘ 〈 𝑚 , 𝑛 〉 ) |
| 38 |
36 37
|
eqtr4di |
⊢ ( 𝑝 = 〈 𝑚 , 𝑛 〉 → ( 𝐻 ‘ 𝑝 ) = ( 𝑚 𝐻 𝑛 ) ) |
| 39 |
35 38
|
imaeq12d |
⊢ ( 𝑝 = 〈 𝑚 , 𝑛 〉 → ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) = ( ( 𝑚 𝐺 𝑛 ) “ ( 𝑚 𝐻 𝑛 ) ) ) |
| 40 |
39
|
sseq1d |
⊢ ( 𝑝 = 〈 𝑚 , 𝑛 〉 → ( ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ⊆ ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ↔ ( ( 𝑚 𝐺 𝑛 ) “ ( 𝑚 𝐻 𝑛 ) ) ⊆ ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) ) |
| 41 |
40
|
ralxp |
⊢ ( ∀ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ⊆ ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ↔ ∀ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∀ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ( ( 𝑚 𝐺 𝑛 ) “ ( 𝑚 𝐻 𝑛 ) ) ⊆ ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 42 |
32 41
|
bitri |
⊢ ( ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ⊆ ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ↔ ∀ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ∀ 𝑛 ∈ ( ◡ 𝐹 “ { 𝑤 } ) ( ( 𝑚 𝐺 𝑛 ) “ ( 𝑚 𝐻 𝑛 ) ) ⊆ ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 43 |
31 42
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ⊆ ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 44 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐸 ) |
| 45 |
44
|
brrelex1i |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → 𝐹 ∈ V ) |
| 46 |
4 45
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝐹 ∈ V ) |
| 48 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝑧 ∈ 𝑆 ) |
| 49 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝑤 ∈ 𝑆 ) |
| 50 |
47 47 48 49 3
|
imasubclem3 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( 𝑧 𝐾 𝑤 ) = ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑧 } ) × ( ◡ 𝐹 “ { 𝑤 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) |
| 51 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝑆 ⊆ ( Base ‘ 𝐸 ) ) |
| 52 |
51 48
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝑧 ∈ ( Base ‘ 𝐸 ) ) |
| 53 |
51 49
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → 𝑤 ∈ ( Base ‘ 𝐸 ) ) |
| 54 |
5 7 11 52 53
|
homfval |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( 𝑧 𝐽 𝑤 ) = ( 𝑧 ( Hom ‘ 𝐸 ) 𝑤 ) ) |
| 55 |
43 50 54
|
3sstr4d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( 𝑧 𝐾 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) ) |
| 56 |
55
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( 𝑧 𝐾 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) ) |
| 57 |
46 46 3
|
imasubclem2 |
⊢ ( 𝜑 → 𝐾 Fn ( 𝑆 × 𝑆 ) ) |
| 58 |
5 7
|
homffn |
⊢ 𝐽 Fn ( ( Base ‘ 𝐸 ) × ( Base ‘ 𝐸 ) ) |
| 59 |
58
|
a1i |
⊢ ( 𝜑 → 𝐽 Fn ( ( Base ‘ 𝐸 ) × ( Base ‘ 𝐸 ) ) ) |
| 60 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝐸 ) ∈ V ) |
| 61 |
57 59 60
|
isssc |
⊢ ( 𝜑 → ( 𝐾 ⊆cat 𝐽 ↔ ( 𝑆 ⊆ ( Base ‘ 𝐸 ) ∧ ∀ 𝑧 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( 𝑧 𝐾 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) ) ) ) |
| 62 |
10 56 61
|
mpbir2and |
⊢ ( 𝜑 → 𝐾 ⊆cat 𝐽 ) |