| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubc.s |
⊢ 𝑆 = ( 𝐹 “ 𝐴 ) |
| 2 |
|
imasubc.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
| 3 |
|
imasubc.k |
⊢ 𝐾 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑥 } ) × ( ◡ 𝐹 “ { 𝑦 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) |
| 4 |
|
imassc.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 5 |
|
imaid.i |
⊢ 𝐼 = ( Id ‘ 𝐸 ) |
| 6 |
|
imaid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 7 |
6 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐹 “ 𝐴 ) ) |
| 8 |
|
inisegn0a |
⊢ ( 𝑋 ∈ ( 𝐹 “ 𝐴 ) → ( ◡ 𝐹 “ { 𝑋 } ) ≠ ∅ ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { 𝑋 } ) ≠ ∅ ) |
| 10 |
|
n0 |
⊢ ( ( ◡ 𝐹 “ { 𝑋 } ) ≠ ∅ ↔ ∃ 𝑚 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ) |
| 11 |
9 10
|
sylib |
⊢ ( 𝜑 → ∃ 𝑚 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ) |
| 12 |
|
fveq2 |
⊢ ( 𝑝 = 〈 𝑚 , 𝑚 〉 → ( 𝐺 ‘ 𝑝 ) = ( 𝐺 ‘ 〈 𝑚 , 𝑚 〉 ) ) |
| 13 |
|
df-ov |
⊢ ( 𝑚 𝐺 𝑚 ) = ( 𝐺 ‘ 〈 𝑚 , 𝑚 〉 ) |
| 14 |
12 13
|
eqtr4di |
⊢ ( 𝑝 = 〈 𝑚 , 𝑚 〉 → ( 𝐺 ‘ 𝑝 ) = ( 𝑚 𝐺 𝑚 ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑝 = 〈 𝑚 , 𝑚 〉 → ( 𝐻 ‘ 𝑝 ) = ( 𝐻 ‘ 〈 𝑚 , 𝑚 〉 ) ) |
| 16 |
|
df-ov |
⊢ ( 𝑚 𝐻 𝑚 ) = ( 𝐻 ‘ 〈 𝑚 , 𝑚 〉 ) |
| 17 |
15 16
|
eqtr4di |
⊢ ( 𝑝 = 〈 𝑚 , 𝑚 〉 → ( 𝐻 ‘ 𝑝 ) = ( 𝑚 𝐻 𝑚 ) ) |
| 18 |
14 17
|
imaeq12d |
⊢ ( 𝑝 = 〈 𝑚 , 𝑚 〉 → ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) = ( ( 𝑚 𝐺 𝑚 ) “ ( 𝑚 𝐻 𝑚 ) ) ) |
| 19 |
18
|
eleq2d |
⊢ ( 𝑝 = 〈 𝑚 , 𝑚 〉 → ( ( 𝐼 ‘ 𝑋 ) ∈ ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ↔ ( 𝐼 ‘ 𝑋 ) ∈ ( ( 𝑚 𝐺 𝑚 ) “ ( 𝑚 𝐻 𝑚 ) ) ) ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ) → 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ) |
| 21 |
20 20
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ) → 〈 𝑚 , 𝑚 〉 ∈ ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐹 “ { 𝑋 } ) ) ) |
| 22 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 23 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
| 24 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ) → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 25 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 26 |
22 25 4
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) ) |
| 27 |
26
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝐷 ) ) |
| 28 |
|
fniniseg |
⊢ ( 𝐹 Fn ( Base ‘ 𝐷 ) → ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ↔ ( 𝑚 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑚 ) = 𝑋 ) ) ) |
| 29 |
27 28
|
syl |
⊢ ( 𝜑 → ( 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ↔ ( 𝑚 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑚 ) = 𝑋 ) ) ) |
| 30 |
29
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ) → ( 𝑚 ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐹 ‘ 𝑚 ) = 𝑋 ) ) |
| 31 |
30
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ) → 𝑚 ∈ ( Base ‘ 𝐷 ) ) |
| 32 |
22 23 5 24 31
|
funcid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ) → ( ( 𝑚 𝐺 𝑚 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑚 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
| 33 |
30
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑚 ) = 𝑋 ) |
| 34 |
33
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑚 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 35 |
32 34
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ) → ( ( 𝑚 𝐺 𝑚 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑚 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 36 |
24
|
funcrcl2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ) → 𝐷 ∈ Cat ) |
| 37 |
22 2 23 36 31
|
catidcl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ) → ( ( Id ‘ 𝐷 ) ‘ 𝑚 ) ∈ ( 𝑚 𝐻 𝑚 ) ) |
| 38 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
| 39 |
22 2 38 24 31 31
|
funcf2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ) → ( 𝑚 𝐺 𝑚 ) : ( 𝑚 𝐻 𝑚 ) ⟶ ( ( 𝐹 ‘ 𝑚 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑚 ) ) ) |
| 40 |
39
|
funfvima2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ) ∧ ( ( Id ‘ 𝐷 ) ‘ 𝑚 ) ∈ ( 𝑚 𝐻 𝑚 ) ) → ( ( 𝑚 𝐺 𝑚 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑚 ) ) ∈ ( ( 𝑚 𝐺 𝑚 ) “ ( 𝑚 𝐻 𝑚 ) ) ) |
| 41 |
37 40
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ) → ( ( 𝑚 𝐺 𝑚 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑚 ) ) ∈ ( ( 𝑚 𝐺 𝑚 ) “ ( 𝑚 𝐻 𝑚 ) ) ) |
| 42 |
35 41
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ) → ( 𝐼 ‘ 𝑋 ) ∈ ( ( 𝑚 𝐺 𝑚 ) “ ( 𝑚 𝐻 𝑚 ) ) ) |
| 43 |
19 21 42
|
rspcedvdw |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ◡ 𝐹 “ { 𝑋 } ) ) → ∃ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐹 “ { 𝑋 } ) ) ( 𝐼 ‘ 𝑋 ) ∈ ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) |
| 44 |
11 43
|
exlimddv |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐹 “ { 𝑋 } ) ) ( 𝐼 ‘ 𝑋 ) ∈ ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) |
| 45 |
44
|
eliund |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ∈ ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐹 “ { 𝑋 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) |
| 46 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐸 ) |
| 47 |
46
|
brrelex1i |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → 𝐹 ∈ V ) |
| 48 |
4 47
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 49 |
48 48 6 6 3
|
imasubclem3 |
⊢ ( 𝜑 → ( 𝑋 𝐾 𝑋 ) = ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐹 “ { 𝑋 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) |
| 50 |
45 49
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ∈ ( 𝑋 𝐾 𝑋 ) ) |