Metamath Proof Explorer


Theorem imaid

Description: An image of a functor preserves the identity morphism. (Contributed by Zhi Wang, 7-Nov-2025)

Ref Expression
Hypotheses imasubc.s S = F A
imasubc.h H = Hom D
imasubc.k K = x S , y S p F -1 x × F -1 y G p H p
imassc.f φ F D Func E G
imaid.i I = Id E
imaid.x φ X S
Assertion imaid φ I X X K X

Proof

Step Hyp Ref Expression
1 imasubc.s S = F A
2 imasubc.h H = Hom D
3 imasubc.k K = x S , y S p F -1 x × F -1 y G p H p
4 imassc.f φ F D Func E G
5 imaid.i I = Id E
6 imaid.x φ X S
7 6 1 eleqtrdi φ X F A
8 inisegn0a X F A F -1 X
9 7 8 syl φ F -1 X
10 n0 F -1 X m m F -1 X
11 9 10 sylib φ m m F -1 X
12 fveq2 p = m m G p = G m m
13 df-ov m G m = G m m
14 12 13 eqtr4di p = m m G p = m G m
15 fveq2 p = m m H p = H m m
16 df-ov m H m = H m m
17 15 16 eqtr4di p = m m H p = m H m
18 14 17 imaeq12d p = m m G p H p = m G m m H m
19 18 eleq2d p = m m I X G p H p I X m G m m H m
20 simpr φ m F -1 X m F -1 X
21 20 20 opelxpd φ m F -1 X m m F -1 X × F -1 X
22 eqid Base D = Base D
23 eqid Id D = Id D
24 4 adantr φ m F -1 X F D Func E G
25 eqid Base E = Base E
26 22 25 4 funcf1 φ F : Base D Base E
27 26 ffnd φ F Fn Base D
28 fniniseg F Fn Base D m F -1 X m Base D F m = X
29 27 28 syl φ m F -1 X m Base D F m = X
30 29 biimpa φ m F -1 X m Base D F m = X
31 30 simpld φ m F -1 X m Base D
32 22 23 5 24 31 funcid φ m F -1 X m G m Id D m = I F m
33 30 simprd φ m F -1 X F m = X
34 33 fveq2d φ m F -1 X I F m = I X
35 32 34 eqtrd φ m F -1 X m G m Id D m = I X
36 24 funcrcl2 φ m F -1 X D Cat
37 22 2 23 36 31 catidcl φ m F -1 X Id D m m H m
38 eqid Hom E = Hom E
39 22 2 38 24 31 31 funcf2 φ m F -1 X m G m : m H m F m Hom E F m
40 39 funfvima2d φ m F -1 X Id D m m H m m G m Id D m m G m m H m
41 37 40 mpdan φ m F -1 X m G m Id D m m G m m H m
42 35 41 eqeltrrd φ m F -1 X I X m G m m H m
43 19 21 42 rspcedvdw φ m F -1 X p F -1 X × F -1 X I X G p H p
44 11 43 exlimddv φ p F -1 X × F -1 X I X G p H p
45 44 eliund φ I X p F -1 X × F -1 X G p H p
46 relfunc Rel D Func E
47 46 brrelex1i F D Func E G F V
48 4 47 syl φ F V
49 48 48 6 6 3 imasubclem3 φ X K X = p F -1 X × F -1 X G p H p
50 45 49 eleqtrrd φ I X X K X