| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubc.s |
|
| 2 |
|
imasubc.h |
|
| 3 |
|
imasubc.k |
|
| 4 |
|
imassc.f |
|
| 5 |
|
imaid.i |
|
| 6 |
|
imaid.x |
|
| 7 |
6 1
|
eleqtrdi |
|
| 8 |
|
inisegn0a |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
n0 |
|
| 11 |
9 10
|
sylib |
|
| 12 |
|
fveq2 |
|
| 13 |
|
df-ov |
|
| 14 |
12 13
|
eqtr4di |
|
| 15 |
|
fveq2 |
|
| 16 |
|
df-ov |
|
| 17 |
15 16
|
eqtr4di |
|
| 18 |
14 17
|
imaeq12d |
|
| 19 |
18
|
eleq2d |
|
| 20 |
|
simpr |
|
| 21 |
20 20
|
opelxpd |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
4
|
adantr |
|
| 25 |
|
eqid |
|
| 26 |
22 25 4
|
funcf1 |
|
| 27 |
26
|
ffnd |
|
| 28 |
|
fniniseg |
|
| 29 |
27 28
|
syl |
|
| 30 |
29
|
biimpa |
|
| 31 |
30
|
simpld |
|
| 32 |
22 23 5 24 31
|
funcid |
|
| 33 |
30
|
simprd |
|
| 34 |
33
|
fveq2d |
|
| 35 |
32 34
|
eqtrd |
|
| 36 |
24
|
funcrcl2 |
|
| 37 |
22 2 23 36 31
|
catidcl |
|
| 38 |
|
eqid |
|
| 39 |
22 2 38 24 31 31
|
funcf2 |
|
| 40 |
39
|
funfvima2d |
|
| 41 |
37 40
|
mpdan |
|
| 42 |
35 41
|
eqeltrrd |
|
| 43 |
19 21 42
|
rspcedvdw |
|
| 44 |
11 43
|
exlimddv |
|
| 45 |
44
|
eliund |
|
| 46 |
|
relfunc |
|
| 47 |
46
|
brrelex1i |
|
| 48 |
4 47
|
syl |
|
| 49 |
48 48 6 6 3
|
imasubclem3 |
|
| 50 |
45 49
|
eleqtrrd |
|