Metamath Proof Explorer


Theorem funfvima2d

Description: A function's value in a preimage belongs to the image. (Contributed by Stanislas Polu, 9-Mar-2020) (Revised by AV, 23-Mar-2024)

Ref Expression
Hypothesis funfvima2d.1 φF:AB
Assertion funfvima2d φXAFXFA

Proof

Step Hyp Ref Expression
1 funfvima2d.1 φF:AB
2 1 ffund φFunF
3 ssidd φAA
4 1 fdmd φdomF=A
5 3 4 sseqtrrd φAdomF
6 funfvima2 FunFAdomFXAFXFA
7 2 5 6 syl2anc φXAFXFA
8 7 imp φXAFXFA