| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubc.s |
|- S = ( F " A ) |
| 2 |
|
imasubc.h |
|- H = ( Hom ` D ) |
| 3 |
|
imasubc.k |
|- K = ( x e. S , y e. S |-> U_ p e. ( ( `' F " { x } ) X. ( `' F " { y } ) ) ( ( G ` p ) " ( H ` p ) ) ) |
| 4 |
|
imassc.f |
|- ( ph -> F ( D Func E ) G ) |
| 5 |
|
imaid.i |
|- I = ( Id ` E ) |
| 6 |
|
imaid.x |
|- ( ph -> X e. S ) |
| 7 |
6 1
|
eleqtrdi |
|- ( ph -> X e. ( F " A ) ) |
| 8 |
|
inisegn0a |
|- ( X e. ( F " A ) -> ( `' F " { X } ) =/= (/) ) |
| 9 |
7 8
|
syl |
|- ( ph -> ( `' F " { X } ) =/= (/) ) |
| 10 |
|
n0 |
|- ( ( `' F " { X } ) =/= (/) <-> E. m m e. ( `' F " { X } ) ) |
| 11 |
9 10
|
sylib |
|- ( ph -> E. m m e. ( `' F " { X } ) ) |
| 12 |
|
fveq2 |
|- ( p = <. m , m >. -> ( G ` p ) = ( G ` <. m , m >. ) ) |
| 13 |
|
df-ov |
|- ( m G m ) = ( G ` <. m , m >. ) |
| 14 |
12 13
|
eqtr4di |
|- ( p = <. m , m >. -> ( G ` p ) = ( m G m ) ) |
| 15 |
|
fveq2 |
|- ( p = <. m , m >. -> ( H ` p ) = ( H ` <. m , m >. ) ) |
| 16 |
|
df-ov |
|- ( m H m ) = ( H ` <. m , m >. ) |
| 17 |
15 16
|
eqtr4di |
|- ( p = <. m , m >. -> ( H ` p ) = ( m H m ) ) |
| 18 |
14 17
|
imaeq12d |
|- ( p = <. m , m >. -> ( ( G ` p ) " ( H ` p ) ) = ( ( m G m ) " ( m H m ) ) ) |
| 19 |
18
|
eleq2d |
|- ( p = <. m , m >. -> ( ( I ` X ) e. ( ( G ` p ) " ( H ` p ) ) <-> ( I ` X ) e. ( ( m G m ) " ( m H m ) ) ) ) |
| 20 |
|
simpr |
|- ( ( ph /\ m e. ( `' F " { X } ) ) -> m e. ( `' F " { X } ) ) |
| 21 |
20 20
|
opelxpd |
|- ( ( ph /\ m e. ( `' F " { X } ) ) -> <. m , m >. e. ( ( `' F " { X } ) X. ( `' F " { X } ) ) ) |
| 22 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 23 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
| 24 |
4
|
adantr |
|- ( ( ph /\ m e. ( `' F " { X } ) ) -> F ( D Func E ) G ) |
| 25 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 26 |
22 25 4
|
funcf1 |
|- ( ph -> F : ( Base ` D ) --> ( Base ` E ) ) |
| 27 |
26
|
ffnd |
|- ( ph -> F Fn ( Base ` D ) ) |
| 28 |
|
fniniseg |
|- ( F Fn ( Base ` D ) -> ( m e. ( `' F " { X } ) <-> ( m e. ( Base ` D ) /\ ( F ` m ) = X ) ) ) |
| 29 |
27 28
|
syl |
|- ( ph -> ( m e. ( `' F " { X } ) <-> ( m e. ( Base ` D ) /\ ( F ` m ) = X ) ) ) |
| 30 |
29
|
biimpa |
|- ( ( ph /\ m e. ( `' F " { X } ) ) -> ( m e. ( Base ` D ) /\ ( F ` m ) = X ) ) |
| 31 |
30
|
simpld |
|- ( ( ph /\ m e. ( `' F " { X } ) ) -> m e. ( Base ` D ) ) |
| 32 |
22 23 5 24 31
|
funcid |
|- ( ( ph /\ m e. ( `' F " { X } ) ) -> ( ( m G m ) ` ( ( Id ` D ) ` m ) ) = ( I ` ( F ` m ) ) ) |
| 33 |
30
|
simprd |
|- ( ( ph /\ m e. ( `' F " { X } ) ) -> ( F ` m ) = X ) |
| 34 |
33
|
fveq2d |
|- ( ( ph /\ m e. ( `' F " { X } ) ) -> ( I ` ( F ` m ) ) = ( I ` X ) ) |
| 35 |
32 34
|
eqtrd |
|- ( ( ph /\ m e. ( `' F " { X } ) ) -> ( ( m G m ) ` ( ( Id ` D ) ` m ) ) = ( I ` X ) ) |
| 36 |
24
|
funcrcl2 |
|- ( ( ph /\ m e. ( `' F " { X } ) ) -> D e. Cat ) |
| 37 |
22 2 23 36 31
|
catidcl |
|- ( ( ph /\ m e. ( `' F " { X } ) ) -> ( ( Id ` D ) ` m ) e. ( m H m ) ) |
| 38 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
| 39 |
22 2 38 24 31 31
|
funcf2 |
|- ( ( ph /\ m e. ( `' F " { X } ) ) -> ( m G m ) : ( m H m ) --> ( ( F ` m ) ( Hom ` E ) ( F ` m ) ) ) |
| 40 |
39
|
funfvima2d |
|- ( ( ( ph /\ m e. ( `' F " { X } ) ) /\ ( ( Id ` D ) ` m ) e. ( m H m ) ) -> ( ( m G m ) ` ( ( Id ` D ) ` m ) ) e. ( ( m G m ) " ( m H m ) ) ) |
| 41 |
37 40
|
mpdan |
|- ( ( ph /\ m e. ( `' F " { X } ) ) -> ( ( m G m ) ` ( ( Id ` D ) ` m ) ) e. ( ( m G m ) " ( m H m ) ) ) |
| 42 |
35 41
|
eqeltrrd |
|- ( ( ph /\ m e. ( `' F " { X } ) ) -> ( I ` X ) e. ( ( m G m ) " ( m H m ) ) ) |
| 43 |
19 21 42
|
rspcedvdw |
|- ( ( ph /\ m e. ( `' F " { X } ) ) -> E. p e. ( ( `' F " { X } ) X. ( `' F " { X } ) ) ( I ` X ) e. ( ( G ` p ) " ( H ` p ) ) ) |
| 44 |
11 43
|
exlimddv |
|- ( ph -> E. p e. ( ( `' F " { X } ) X. ( `' F " { X } ) ) ( I ` X ) e. ( ( G ` p ) " ( H ` p ) ) ) |
| 45 |
44
|
eliund |
|- ( ph -> ( I ` X ) e. U_ p e. ( ( `' F " { X } ) X. ( `' F " { X } ) ) ( ( G ` p ) " ( H ` p ) ) ) |
| 46 |
|
relfunc |
|- Rel ( D Func E ) |
| 47 |
46
|
brrelex1i |
|- ( F ( D Func E ) G -> F e. _V ) |
| 48 |
4 47
|
syl |
|- ( ph -> F e. _V ) |
| 49 |
48 48 6 6 3
|
imasubclem3 |
|- ( ph -> ( X K X ) = U_ p e. ( ( `' F " { X } ) X. ( `' F " { X } ) ) ( ( G ` p ) " ( H ` p ) ) ) |
| 50 |
45 49
|
eleqtrrd |
|- ( ph -> ( I ` X ) e. ( X K X ) ) |