| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubc.s |
|- S = ( F " A ) |
| 2 |
|
imasubc.h |
|- H = ( Hom ` D ) |
| 3 |
|
imasubc.k |
|- K = ( x e. S , y e. S |-> U_ p e. ( ( `' F " { x } ) X. ( `' F " { y } ) ) ( ( G ` p ) " ( H ` p ) ) ) |
| 4 |
|
imassc.f |
|- ( ph -> F ( D Func E ) G ) |
| 5 |
|
imaf1co.b |
|- B = ( Base ` D ) |
| 6 |
|
imaf1co.c |
|- C = ( Base ` E ) |
| 7 |
|
imaf1co.o |
|- .xb = ( comp ` E ) |
| 8 |
|
imaf1co.f |
|- ( ph -> F : B -1-1-> C ) |
| 9 |
|
imaf1co.x |
|- ( ph -> X e. S ) |
| 10 |
|
imaf1co.y |
|- ( ph -> Y e. S ) |
| 11 |
|
imaf1co.z |
|- ( ph -> Z e. S ) |
| 12 |
|
imaf1co.m |
|- ( ph -> M e. ( X K Y ) ) |
| 13 |
|
imaf1co.n |
|- ( ph -> N e. ( Y K Z ) ) |
| 14 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
| 15 |
4
|
funcrcl2 |
|- ( ph -> D e. Cat ) |
| 16 |
15
|
ad4antr |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> D e. Cat ) |
| 17 |
1 8 9
|
imasubc3lem1 |
|- ( ph -> ( { ( `' F ` X ) } = ( `' F " { X } ) /\ ( F ` ( `' F ` X ) ) = X /\ ( `' F ` X ) e. B ) ) |
| 18 |
17
|
simp3d |
|- ( ph -> ( `' F ` X ) e. B ) |
| 19 |
18
|
ad4antr |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> ( `' F ` X ) e. B ) |
| 20 |
1 8 10
|
imasubc3lem1 |
|- ( ph -> ( { ( `' F ` Y ) } = ( `' F " { Y } ) /\ ( F ` ( `' F ` Y ) ) = Y /\ ( `' F ` Y ) e. B ) ) |
| 21 |
20
|
simp3d |
|- ( ph -> ( `' F ` Y ) e. B ) |
| 22 |
21
|
ad4antr |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> ( `' F ` Y ) e. B ) |
| 23 |
1 8 11
|
imasubc3lem1 |
|- ( ph -> ( { ( `' F ` Z ) } = ( `' F " { Z } ) /\ ( F ` ( `' F ` Z ) ) = Z /\ ( `' F ` Z ) e. B ) ) |
| 24 |
23
|
simp3d |
|- ( ph -> ( `' F ` Z ) e. B ) |
| 25 |
24
|
ad4antr |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> ( `' F ` Z ) e. B ) |
| 26 |
|
simp-4r |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) |
| 27 |
|
simplr |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) |
| 28 |
5 2 14 16 19 22 25 26 27
|
catcocl |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> ( n ( <. ( `' F ` X ) , ( `' F ` Y ) >. ( comp ` D ) ( `' F ` Z ) ) m ) e. ( ( `' F ` X ) H ( `' F ` Z ) ) ) |
| 29 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
| 30 |
5 2 29 4 18 24
|
funcf2 |
|- ( ph -> ( ( `' F ` X ) G ( `' F ` Z ) ) : ( ( `' F ` X ) H ( `' F ` Z ) ) --> ( ( F ` ( `' F ` X ) ) ( Hom ` E ) ( F ` ( `' F ` Z ) ) ) ) |
| 31 |
30
|
ad4antr |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> ( ( `' F ` X ) G ( `' F ` Z ) ) : ( ( `' F ` X ) H ( `' F ` Z ) ) --> ( ( F ` ( `' F ` X ) ) ( Hom ` E ) ( F ` ( `' F ` Z ) ) ) ) |
| 32 |
31
|
funfvima2d |
|- ( ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) /\ ( n ( <. ( `' F ` X ) , ( `' F ` Y ) >. ( comp ` D ) ( `' F ` Z ) ) m ) e. ( ( `' F ` X ) H ( `' F ` Z ) ) ) -> ( ( ( `' F ` X ) G ( `' F ` Z ) ) ` ( n ( <. ( `' F ` X ) , ( `' F ` Y ) >. ( comp ` D ) ( `' F ` Z ) ) m ) ) e. ( ( ( `' F ` X ) G ( `' F ` Z ) ) " ( ( `' F ` X ) H ( `' F ` Z ) ) ) ) |
| 33 |
28 32
|
mpdan |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> ( ( ( `' F ` X ) G ( `' F ` Z ) ) ` ( n ( <. ( `' F ` X ) , ( `' F ` Y ) >. ( comp ` D ) ( `' F ` Z ) ) m ) ) e. ( ( ( `' F ` X ) G ( `' F ` Z ) ) " ( ( `' F ` X ) H ( `' F ` Z ) ) ) ) |
| 34 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> F ( D Func E ) G ) |
| 35 |
5 2 14 7 34 19 22 25 26 27
|
funcco |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> ( ( ( `' F ` X ) G ( `' F ` Z ) ) ` ( n ( <. ( `' F ` X ) , ( `' F ` Y ) >. ( comp ` D ) ( `' F ` Z ) ) m ) ) = ( ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) ( <. ( F ` ( `' F ` X ) ) , ( F ` ( `' F ` Y ) ) >. .xb ( F ` ( `' F ` Z ) ) ) ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) ) ) |
| 36 |
17
|
simp2d |
|- ( ph -> ( F ` ( `' F ` X ) ) = X ) |
| 37 |
36
|
ad4antr |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> ( F ` ( `' F ` X ) ) = X ) |
| 38 |
20
|
simp2d |
|- ( ph -> ( F ` ( `' F ` Y ) ) = Y ) |
| 39 |
38
|
ad4antr |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> ( F ` ( `' F ` Y ) ) = Y ) |
| 40 |
37 39
|
opeq12d |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> <. ( F ` ( `' F ` X ) ) , ( F ` ( `' F ` Y ) ) >. = <. X , Y >. ) |
| 41 |
23
|
simp2d |
|- ( ph -> ( F ` ( `' F ` Z ) ) = Z ) |
| 42 |
41
|
ad4antr |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> ( F ` ( `' F ` Z ) ) = Z ) |
| 43 |
40 42
|
oveq12d |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> ( <. ( F ` ( `' F ` X ) ) , ( F ` ( `' F ` Y ) ) >. .xb ( F ` ( `' F ` Z ) ) ) = ( <. X , Y >. .xb Z ) ) |
| 44 |
|
simpr |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) |
| 45 |
|
simpllr |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) |
| 46 |
43 44 45
|
oveq123d |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> ( ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) ( <. ( F ` ( `' F ` X ) ) , ( F ` ( `' F ` Y ) ) >. .xb ( F ` ( `' F ` Z ) ) ) ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) ) = ( N ( <. X , Y >. .xb Z ) M ) ) |
| 47 |
35 46
|
eqtr2d |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> ( N ( <. X , Y >. .xb Z ) M ) = ( ( ( `' F ` X ) G ( `' F ` Z ) ) ` ( n ( <. ( `' F ` X ) , ( `' F ` Y ) >. ( comp ` D ) ( `' F ` Z ) ) m ) ) ) |
| 48 |
|
relfunc |
|- Rel ( D Func E ) |
| 49 |
48
|
brrelex1i |
|- ( F ( D Func E ) G -> F e. _V ) |
| 50 |
4 49
|
syl |
|- ( ph -> F e. _V ) |
| 51 |
1 8 9 11 50 3
|
imasubc3lem2 |
|- ( ph -> ( X K Z ) = ( ( ( `' F ` X ) G ( `' F ` Z ) ) " ( ( `' F ` X ) H ( `' F ` Z ) ) ) ) |
| 52 |
51
|
ad4antr |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> ( X K Z ) = ( ( ( `' F ` X ) G ( `' F ` Z ) ) " ( ( `' F ` X ) H ( `' F ` Z ) ) ) ) |
| 53 |
33 47 52
|
3eltr4d |
|- ( ( ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) /\ n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ) /\ ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) -> ( N ( <. X , Y >. .xb Z ) M ) e. ( X K Z ) ) |
| 54 |
5 2 29 4 21 24
|
funcf2 |
|- ( ph -> ( ( `' F ` Y ) G ( `' F ` Z ) ) : ( ( `' F ` Y ) H ( `' F ` Z ) ) --> ( ( F ` ( `' F ` Y ) ) ( Hom ` E ) ( F ` ( `' F ` Z ) ) ) ) |
| 55 |
54
|
ffund |
|- ( ph -> Fun ( ( `' F ` Y ) G ( `' F ` Z ) ) ) |
| 56 |
1 8 10 11 50 3
|
imasubc3lem2 |
|- ( ph -> ( Y K Z ) = ( ( ( `' F ` Y ) G ( `' F ` Z ) ) " ( ( `' F ` Y ) H ( `' F ` Z ) ) ) ) |
| 57 |
13 56
|
eleqtrd |
|- ( ph -> N e. ( ( ( `' F ` Y ) G ( `' F ` Z ) ) " ( ( `' F ` Y ) H ( `' F ` Z ) ) ) ) |
| 58 |
|
fvelima |
|- ( ( Fun ( ( `' F ` Y ) G ( `' F ` Z ) ) /\ N e. ( ( ( `' F ` Y ) G ( `' F ` Z ) ) " ( ( `' F ` Y ) H ( `' F ` Z ) ) ) ) -> E. n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) |
| 59 |
55 57 58
|
syl2anc |
|- ( ph -> E. n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) |
| 60 |
59
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) -> E. n e. ( ( `' F ` Y ) H ( `' F ` Z ) ) ( ( ( `' F ` Y ) G ( `' F ` Z ) ) ` n ) = N ) |
| 61 |
53 60
|
r19.29a |
|- ( ( ( ph /\ m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ) /\ ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) -> ( N ( <. X , Y >. .xb Z ) M ) e. ( X K Z ) ) |
| 62 |
5 2 29 4 18 21
|
funcf2 |
|- ( ph -> ( ( `' F ` X ) G ( `' F ` Y ) ) : ( ( `' F ` X ) H ( `' F ` Y ) ) --> ( ( F ` ( `' F ` X ) ) ( Hom ` E ) ( F ` ( `' F ` Y ) ) ) ) |
| 63 |
62
|
ffund |
|- ( ph -> Fun ( ( `' F ` X ) G ( `' F ` Y ) ) ) |
| 64 |
1 8 9 10 50 3
|
imasubc3lem2 |
|- ( ph -> ( X K Y ) = ( ( ( `' F ` X ) G ( `' F ` Y ) ) " ( ( `' F ` X ) H ( `' F ` Y ) ) ) ) |
| 65 |
12 64
|
eleqtrd |
|- ( ph -> M e. ( ( ( `' F ` X ) G ( `' F ` Y ) ) " ( ( `' F ` X ) H ( `' F ` Y ) ) ) ) |
| 66 |
|
fvelima |
|- ( ( Fun ( ( `' F ` X ) G ( `' F ` Y ) ) /\ M e. ( ( ( `' F ` X ) G ( `' F ` Y ) ) " ( ( `' F ` X ) H ( `' F ` Y ) ) ) ) -> E. m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) |
| 67 |
63 65 66
|
syl2anc |
|- ( ph -> E. m e. ( ( `' F ` X ) H ( `' F ` Y ) ) ( ( ( `' F ` X ) G ( `' F ` Y ) ) ` m ) = M ) |
| 68 |
61 67
|
r19.29a |
|- ( ph -> ( N ( <. X , Y >. .xb Z ) M ) e. ( X K Z ) ) |