| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubc.s |
⊢ 𝑆 = ( 𝐹 “ 𝐴 ) |
| 2 |
|
imasubc.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
| 3 |
|
imasubc.k |
⊢ 𝐾 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑥 } ) × ( ◡ 𝐹 “ { 𝑦 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) |
| 4 |
|
imassc.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 5 |
|
imaf1co.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 6 |
|
imaf1co.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
| 7 |
|
imaf1co.o |
⊢ ∙ = ( comp ‘ 𝐸 ) |
| 8 |
|
imaf1co.f |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1→ 𝐶 ) |
| 9 |
|
imaf1co.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 10 |
|
imaf1co.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
| 11 |
|
imaf1co.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑆 ) |
| 12 |
|
imaf1co.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 𝐾 𝑌 ) ) |
| 13 |
|
imaf1co.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑌 𝐾 𝑍 ) ) |
| 14 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
| 15 |
4
|
funcrcl2 |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 16 |
15
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → 𝐷 ∈ Cat ) |
| 17 |
1 8 9
|
imasubc3lem1 |
⊢ ( 𝜑 → ( { ( ◡ 𝐹 ‘ 𝑋 ) } = ( ◡ 𝐹 “ { 𝑋 } ) ∧ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑋 ) ) = 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) ) |
| 18 |
17
|
simp3d |
⊢ ( 𝜑 → ( ◡ 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
| 19 |
18
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → ( ◡ 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
| 20 |
1 8 10
|
imasubc3lem1 |
⊢ ( 𝜑 → ( { ( ◡ 𝐹 ‘ 𝑌 ) } = ( ◡ 𝐹 “ { 𝑌 } ) ∧ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ∧ ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝐵 ) ) |
| 21 |
20
|
simp3d |
⊢ ( 𝜑 → ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝐵 ) |
| 22 |
21
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝐵 ) |
| 23 |
1 8 11
|
imasubc3lem1 |
⊢ ( 𝜑 → ( { ( ◡ 𝐹 ‘ 𝑍 ) } = ( ◡ 𝐹 “ { 𝑍 } ) ∧ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑍 ) ) = 𝑍 ∧ ( ◡ 𝐹 ‘ 𝑍 ) ∈ 𝐵 ) ) |
| 24 |
23
|
simp3d |
⊢ ( 𝜑 → ( ◡ 𝐹 ‘ 𝑍 ) ∈ 𝐵 ) |
| 25 |
24
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → ( ◡ 𝐹 ‘ 𝑍 ) ∈ 𝐵 ) |
| 26 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) |
| 27 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) |
| 28 |
5 2 14 16 19 22 25 26 27
|
catcocl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → ( 𝑛 ( 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐷 ) ( ◡ 𝐹 ‘ 𝑍 ) ) 𝑚 ) ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) |
| 29 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
| 30 |
5 2 29 4 18 24
|
funcf2 |
⊢ ( 𝜑 → ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) : ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ⟶ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑍 ) ) ) ) |
| 31 |
30
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) : ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ⟶ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑍 ) ) ) ) |
| 32 |
31
|
funfvima2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) ∧ ( 𝑛 ( 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐷 ) ( ◡ 𝐹 ‘ 𝑍 ) ) 𝑚 ) ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) → ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ ( 𝑛 ( 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐷 ) ( ◡ 𝐹 ‘ 𝑍 ) ) 𝑚 ) ) ∈ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) “ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ) |
| 33 |
28 32
|
mpdan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ ( 𝑛 ( 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐷 ) ( ◡ 𝐹 ‘ 𝑍 ) ) 𝑚 ) ) ∈ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) “ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ) |
| 34 |
4
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 35 |
5 2 14 7 34 19 22 25 26 27
|
funcco |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ ( 𝑛 ( 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐷 ) ( ◡ 𝐹 ‘ 𝑍 ) ) 𝑚 ) ) = ( ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑋 ) ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) 〉 ∙ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑍 ) ) ) ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) ) ) |
| 36 |
17
|
simp2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑋 ) ) = 𝑋 ) |
| 37 |
36
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑋 ) ) = 𝑋 ) |
| 38 |
20
|
simp2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
| 39 |
38
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ) |
| 40 |
37 39
|
opeq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → 〈 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑋 ) ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) 〉 = 〈 𝑋 , 𝑌 〉 ) |
| 41 |
23
|
simp2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑍 ) ) = 𝑍 ) |
| 42 |
41
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑍 ) ) = 𝑍 ) |
| 43 |
40 42
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → ( 〈 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑋 ) ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) 〉 ∙ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑍 ) ) ) = ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) ) |
| 44 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) |
| 45 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) |
| 46 |
43 44 45
|
oveq123d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → ( ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑋 ) ) , ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) 〉 ∙ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑍 ) ) ) ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) ) = ( 𝑁 ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) 𝑀 ) ) |
| 47 |
35 46
|
eqtr2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → ( 𝑁 ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) 𝑀 ) = ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ ( 𝑛 ( 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐷 ) ( ◡ 𝐹 ‘ 𝑍 ) ) 𝑚 ) ) ) |
| 48 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐸 ) |
| 49 |
48
|
brrelex1i |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → 𝐹 ∈ V ) |
| 50 |
4 49
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 51 |
1 8 9 11 50 3
|
imasubc3lem2 |
⊢ ( 𝜑 → ( 𝑋 𝐾 𝑍 ) = ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) “ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ) |
| 52 |
51
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → ( 𝑋 𝐾 𝑍 ) = ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) “ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ) |
| 53 |
33 47 52
|
3eltr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) ∧ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) → ( 𝑁 ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) 𝑀 ) ∈ ( 𝑋 𝐾 𝑍 ) ) |
| 54 |
5 2 29 4 21 24
|
funcf2 |
⊢ ( 𝜑 → ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) : ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ⟶ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑍 ) ) ) ) |
| 55 |
54
|
ffund |
⊢ ( 𝜑 → Fun ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ) |
| 56 |
1 8 10 11 50 3
|
imasubc3lem2 |
⊢ ( 𝜑 → ( 𝑌 𝐾 𝑍 ) = ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) “ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ) |
| 57 |
13 56
|
eleqtrd |
⊢ ( 𝜑 → 𝑁 ∈ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) “ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ) |
| 58 |
|
fvelima |
⊢ ( ( Fun ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ∧ 𝑁 ∈ ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) “ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ) ) → ∃ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) |
| 59 |
55 57 58
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) |
| 60 |
59
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) → ∃ 𝑛 ∈ ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐻 ( ◡ 𝐹 ‘ 𝑍 ) ) ( ( ( ◡ 𝐹 ‘ 𝑌 ) 𝐺 ( ◡ 𝐹 ‘ 𝑍 ) ) ‘ 𝑛 ) = 𝑁 ) |
| 61 |
53 60
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ∧ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) → ( 𝑁 ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) 𝑀 ) ∈ ( 𝑋 𝐾 𝑍 ) ) |
| 62 |
5 2 29 4 18 21
|
funcf2 |
⊢ ( 𝜑 → ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) : ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ⟶ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑋 ) ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) ) ) |
| 63 |
62
|
ffund |
⊢ ( 𝜑 → Fun ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ) |
| 64 |
1 8 9 10 50 3
|
imasubc3lem2 |
⊢ ( 𝜑 → ( 𝑋 𝐾 𝑌 ) = ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) “ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ) |
| 65 |
12 64
|
eleqtrd |
⊢ ( 𝜑 → 𝑀 ∈ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) “ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ) |
| 66 |
|
fvelima |
⊢ ( ( Fun ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ∧ 𝑀 ∈ ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) “ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ) → ∃ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) |
| 67 |
63 65 66
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ‘ 𝑚 ) = 𝑀 ) |
| 68 |
61 67
|
r19.29a |
⊢ ( 𝜑 → ( 𝑁 ( 〈 𝑋 , 𝑌 〉 ∙ 𝑍 ) 𝑀 ) ∈ ( 𝑋 𝐾 𝑍 ) ) |