| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubc.s |
⊢ 𝑆 = ( 𝐹 “ 𝐴 ) |
| 2 |
|
imasubc.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
| 3 |
|
imasubc.k |
⊢ 𝐾 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑥 } ) × ( ◡ 𝐹 “ { 𝑦 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) |
| 4 |
|
imassc.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 5 |
|
imasubc3.f |
⊢ ( 𝜑 → Fun ◡ 𝐹 ) |
| 6 |
|
eqid |
⊢ ( Homf ‘ 𝐸 ) = ( Homf ‘ 𝐸 ) |
| 7 |
1 2 3 4 6
|
imassc |
⊢ ( 𝜑 → 𝐾 ⊆cat ( Homf ‘ 𝐸 ) ) |
| 8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 9 |
|
eqid |
⊢ ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ 𝑆 ) |
| 11 |
1 2 3 8 9 10
|
imaid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( Id ‘ 𝐸 ) ‘ 𝑎 ) ∈ ( 𝑎 𝐾 𝑎 ) ) |
| 12 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐾 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐾 𝑐 ) ) ) → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 15 |
|
eqid |
⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) |
| 16 |
13 14 4
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) ) |
| 17 |
|
df-f1 |
⊢ ( 𝐹 : ( Base ‘ 𝐷 ) –1-1→ ( Base ‘ 𝐸 ) ↔ ( 𝐹 : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) ∧ Fun ◡ 𝐹 ) ) |
| 18 |
16 5 17
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐷 ) –1-1→ ( Base ‘ 𝐸 ) ) |
| 19 |
18
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐾 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐾 𝑐 ) ) ) → 𝐹 : ( Base ‘ 𝐷 ) –1-1→ ( Base ‘ 𝐸 ) ) |
| 20 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐾 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐾 𝑐 ) ) ) → 𝑎 ∈ 𝑆 ) |
| 21 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐾 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐾 𝑐 ) ) ) → 𝑏 ∈ 𝑆 ) |
| 22 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐾 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐾 𝑐 ) ) ) → 𝑐 ∈ 𝑆 ) |
| 23 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐾 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐾 𝑐 ) ) ) → 𝑓 ∈ ( 𝑎 𝐾 𝑏 ) ) |
| 24 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐾 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐾 𝑐 ) ) ) → 𝑔 ∈ ( 𝑏 𝐾 𝑐 ) ) |
| 25 |
1 2 3 12 13 14 15 19 20 21 22 23 24
|
imaf1co |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐾 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐾 𝑐 ) ) ) → ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐸 ) 𝑐 ) 𝑓 ) ∈ ( 𝑎 𝐾 𝑐 ) ) |
| 26 |
25
|
ralrimivva |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) → ∀ 𝑓 ∈ ( 𝑎 𝐾 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐾 𝑐 ) ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐸 ) 𝑐 ) 𝑓 ) ∈ ( 𝑎 𝐾 𝑐 ) ) |
| 27 |
26
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ∀ 𝑏 ∈ 𝑆 ∀ 𝑐 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑎 𝐾 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐾 𝑐 ) ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐸 ) 𝑐 ) 𝑓 ) ∈ ( 𝑎 𝐾 𝑐 ) ) |
| 28 |
11 27
|
jca |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( ( Id ‘ 𝐸 ) ‘ 𝑎 ) ∈ ( 𝑎 𝐾 𝑎 ) ∧ ∀ 𝑏 ∈ 𝑆 ∀ 𝑐 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑎 𝐾 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐾 𝑐 ) ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐸 ) 𝑐 ) 𝑓 ) ∈ ( 𝑎 𝐾 𝑐 ) ) ) |
| 29 |
28
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑆 ( ( ( Id ‘ 𝐸 ) ‘ 𝑎 ) ∈ ( 𝑎 𝐾 𝑎 ) ∧ ∀ 𝑏 ∈ 𝑆 ∀ 𝑐 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑎 𝐾 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐾 𝑐 ) ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐸 ) 𝑐 ) 𝑓 ) ∈ ( 𝑎 𝐾 𝑐 ) ) ) |
| 30 |
4
|
funcrcl3 |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 31 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐸 ) |
| 32 |
31
|
brrelex1i |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → 𝐹 ∈ V ) |
| 33 |
4 32
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 34 |
33 33 3
|
imasubclem2 |
⊢ ( 𝜑 → 𝐾 Fn ( 𝑆 × 𝑆 ) ) |
| 35 |
6 9 15 30 34
|
issubc2 |
⊢ ( 𝜑 → ( 𝐾 ∈ ( Subcat ‘ 𝐸 ) ↔ ( 𝐾 ⊆cat ( Homf ‘ 𝐸 ) ∧ ∀ 𝑎 ∈ 𝑆 ( ( ( Id ‘ 𝐸 ) ‘ 𝑎 ) ∈ ( 𝑎 𝐾 𝑎 ) ∧ ∀ 𝑏 ∈ 𝑆 ∀ 𝑐 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑎 𝐾 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐾 𝑐 ) ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐸 ) 𝑐 ) 𝑓 ) ∈ ( 𝑎 𝐾 𝑐 ) ) ) ) ) |
| 36 |
7 29 35
|
mpbir2and |
⊢ ( 𝜑 → 𝐾 ∈ ( Subcat ‘ 𝐸 ) ) |