Database  
				ZF (ZERMELO-FRAENKEL) SET THEORY  
				ZF Set Theory - add the Axiom of Power Sets  
				Functions  
				fniniseg  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Membership in the preimage of a singleton, under a function.  (Contributed by Mario Carneiro , 12-May-2014)   (Proof shortened by Mario Carneiro  , 28-Apr-2015) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
				
					 
					Assertion 
					fniniseg  
					⊢   ( 𝐹   Fn  𝐴   →  ( 𝐶   ∈  ( ◡   𝐹   “  { 𝐵  } )  ↔  ( 𝐶   ∈  𝐴   ∧  ( 𝐹  ‘ 𝐶  )  =  𝐵  ) ) )  
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							elpreima  
							⊢  ( 𝐹   Fn  𝐴   →  ( 𝐶   ∈  ( ◡   𝐹   “  { 𝐵  } )  ↔  ( 𝐶   ∈  𝐴   ∧  ( 𝐹  ‘ 𝐶  )  ∈  { 𝐵  } ) ) )  
						 
						
							2  
							
								
							 
							fvex  
							⊢  ( 𝐹  ‘ 𝐶  )  ∈  V  
						 
						
							3  
							
								2 
							 
							elsn  
							⊢  ( ( 𝐹  ‘ 𝐶  )  ∈  { 𝐵  }  ↔  ( 𝐹  ‘ 𝐶  )  =  𝐵  )  
						 
						
							4  
							
								3 
							 
							anbi2i  
							⊢  ( ( 𝐶   ∈  𝐴   ∧  ( 𝐹  ‘ 𝐶  )  ∈  { 𝐵  } )  ↔  ( 𝐶   ∈  𝐴   ∧  ( 𝐹  ‘ 𝐶  )  =  𝐵  ) )  
						 
						
							5  
							
								1  4 
							 
							bitrdi  
							⊢  ( 𝐹   Fn  𝐴   →  ( 𝐶   ∈  ( ◡   𝐹   “  { 𝐵  } )  ↔  ( 𝐶   ∈  𝐴   ∧  ( 𝐹  ‘ 𝐶  )  =  𝐵  ) ) )