Metamath Proof Explorer


Theorem imassc

Description: An image of a functor satisfies the subcategory subset relation. (Contributed by Zhi Wang, 7-Nov-2025)

Ref Expression
Hypotheses imasubc.s S = F A
imasubc.h H = Hom D
imasubc.k K = x S , y S p F -1 x × F -1 y G p H p
imassc.f φ F D Func E G
imassc.j J = Hom 𝑓 E
Assertion imassc φ K cat J

Proof

Step Hyp Ref Expression
1 imasubc.s S = F A
2 imasubc.h H = Hom D
3 imasubc.k K = x S , y S p F -1 x × F -1 y G p H p
4 imassc.f φ F D Func E G
5 imassc.j J = Hom 𝑓 E
6 eqid Base D = Base D
7 eqid Base E = Base E
8 6 7 4 funcf1 φ F : Base D Base E
9 8 fimassd φ F A Base E
10 1 9 eqsstrid φ S Base E
11 eqid Hom E = Hom E
12 4 ad2antrr φ z S w S m F -1 z n F -1 w F D Func E G
13 6 7 12 funcf1 φ z S w S m F -1 z n F -1 w F : Base D Base E
14 13 ffnd φ z S w S m F -1 z n F -1 w F Fn Base D
15 simprl φ z S w S m F -1 z n F -1 w m F -1 z
16 fniniseg F Fn Base D m F -1 z m Base D F m = z
17 16 biimpa F Fn Base D m F -1 z m Base D F m = z
18 14 15 17 syl2anc φ z S w S m F -1 z n F -1 w m Base D F m = z
19 18 simpld φ z S w S m F -1 z n F -1 w m Base D
20 simprr φ z S w S m F -1 z n F -1 w n F -1 w
21 fniniseg F Fn Base D n F -1 w n Base D F n = w
22 21 biimpa F Fn Base D n F -1 w n Base D F n = w
23 14 20 22 syl2anc φ z S w S m F -1 z n F -1 w n Base D F n = w
24 23 simpld φ z S w S m F -1 z n F -1 w n Base D
25 6 2 11 12 19 24 funcf2 φ z S w S m F -1 z n F -1 w m G n : m H n F m Hom E F n
26 25 fimassd φ z S w S m F -1 z n F -1 w m G n m H n F m Hom E F n
27 18 simprd φ z S w S m F -1 z n F -1 w F m = z
28 23 simprd φ z S w S m F -1 z n F -1 w F n = w
29 27 28 oveq12d φ z S w S m F -1 z n F -1 w F m Hom E F n = z Hom E w
30 26 29 sseqtrd φ z S w S m F -1 z n F -1 w m G n m H n z Hom E w
31 30 ralrimivva φ z S w S m F -1 z n F -1 w m G n m H n z Hom E w
32 iunss p F -1 z × F -1 w G p H p z Hom E w p F -1 z × F -1 w G p H p z Hom E w
33 fveq2 p = m n G p = G m n
34 df-ov m G n = G m n
35 33 34 eqtr4di p = m n G p = m G n
36 fveq2 p = m n H p = H m n
37 df-ov m H n = H m n
38 36 37 eqtr4di p = m n H p = m H n
39 35 38 imaeq12d p = m n G p H p = m G n m H n
40 39 sseq1d p = m n G p H p z Hom E w m G n m H n z Hom E w
41 40 ralxp p F -1 z × F -1 w G p H p z Hom E w m F -1 z n F -1 w m G n m H n z Hom E w
42 32 41 bitri p F -1 z × F -1 w G p H p z Hom E w m F -1 z n F -1 w m G n m H n z Hom E w
43 31 42 sylibr φ z S w S p F -1 z × F -1 w G p H p z Hom E w
44 relfunc Rel D Func E
45 44 brrelex1i F D Func E G F V
46 4 45 syl φ F V
47 46 adantr φ z S w S F V
48 simprl φ z S w S z S
49 simprr φ z S w S w S
50 47 47 48 49 3 imasubclem3 φ z S w S z K w = p F -1 z × F -1 w G p H p
51 10 adantr φ z S w S S Base E
52 51 48 sseldd φ z S w S z Base E
53 51 49 sseldd φ z S w S w Base E
54 5 7 11 52 53 homfval φ z S w S z J w = z Hom E w
55 43 50 54 3sstr4d φ z S w S z K w z J w
56 55 ralrimivva φ z S w S z K w z J w
57 46 46 3 imasubclem2 φ K Fn S × S
58 5 7 homffn J Fn Base E × Base E
59 58 a1i φ J Fn Base E × Base E
60 fvexd φ Base E V
61 57 59 60 isssc φ K cat J S Base E z S w S z K w z J w
62 10 56 61 mpbir2and φ K cat J