| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubc.s |
⊢ 𝑆 = ( 𝐹 “ 𝐴 ) |
| 2 |
|
imasubc.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
| 3 |
|
imasubc.k |
⊢ 𝐾 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑥 } ) × ( ◡ 𝐹 “ { 𝑦 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) |
| 4 |
|
imasubc.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Full 𝐸 ) 𝐺 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 6 |
|
eqid |
⊢ ( Homf ‘ 𝐸 ) = ( Homf ‘ 𝐸 ) |
| 7 |
1 2 3 4 5 6
|
imasubc |
⊢ ( 𝜑 → ( 𝐾 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐸 ) ∧ ( ( Homf ‘ 𝐸 ) ↾ ( 𝑆 × 𝑆 ) ) = 𝐾 ) ) |
| 8 |
7
|
simp3d |
⊢ ( 𝜑 → ( ( Homf ‘ 𝐸 ) ↾ ( 𝑆 × 𝑆 ) ) = 𝐾 ) |
| 9 |
|
fullfunc |
⊢ ( 𝐷 Full 𝐸 ) ⊆ ( 𝐷 Func 𝐸 ) |
| 10 |
9
|
ssbri |
⊢ ( 𝐹 ( 𝐷 Full 𝐸 ) 𝐺 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 11 |
4 10
|
syl |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 12 |
11
|
funcrcl3 |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 13 |
7
|
simp2d |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐸 ) ) |
| 14 |
5 6 12 13
|
fullsubc |
⊢ ( 𝜑 → ( ( Homf ‘ 𝐸 ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( Subcat ‘ 𝐸 ) ) |
| 15 |
8 14
|
eqeltrrd |
⊢ ( 𝜑 → 𝐾 ∈ ( Subcat ‘ 𝐸 ) ) |