| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0 |
|- ( A =/= (/) <-> E. x x e. A ) |
| 2 |
|
n0 |
|- ( B =/= (/) <-> E. y y e. B ) |
| 3 |
1 2
|
anbi12i |
|- ( ( A =/= (/) /\ B =/= (/) ) <-> ( E. x x e. A /\ E. y y e. B ) ) |
| 4 |
|
exdistrv |
|- ( E. x E. y ( x e. A /\ y e. B ) <-> ( E. x x e. A /\ E. y y e. B ) ) |
| 5 |
3 4
|
bitr4i |
|- ( ( A =/= (/) /\ B =/= (/) ) <-> E. x E. y ( x e. A /\ y e. B ) ) |
| 6 |
|
opex |
|- <. x , y >. e. _V |
| 7 |
|
eleq1 |
|- ( z = <. x , y >. -> ( z e. ( A X. B ) <-> <. x , y >. e. ( A X. B ) ) ) |
| 8 |
|
opelxp |
|- ( <. x , y >. e. ( A X. B ) <-> ( x e. A /\ y e. B ) ) |
| 9 |
7 8
|
bitrdi |
|- ( z = <. x , y >. -> ( z e. ( A X. B ) <-> ( x e. A /\ y e. B ) ) ) |
| 10 |
6 9
|
spcev |
|- ( ( x e. A /\ y e. B ) -> E. z z e. ( A X. B ) ) |
| 11 |
|
n0 |
|- ( ( A X. B ) =/= (/) <-> E. z z e. ( A X. B ) ) |
| 12 |
10 11
|
sylibr |
|- ( ( x e. A /\ y e. B ) -> ( A X. B ) =/= (/) ) |
| 13 |
12
|
exlimivv |
|- ( E. x E. y ( x e. A /\ y e. B ) -> ( A X. B ) =/= (/) ) |
| 14 |
5 13
|
sylbi |
|- ( ( A =/= (/) /\ B =/= (/) ) -> ( A X. B ) =/= (/) ) |
| 15 |
|
xpeq1 |
|- ( A = (/) -> ( A X. B ) = ( (/) X. B ) ) |
| 16 |
|
0xp |
|- ( (/) X. B ) = (/) |
| 17 |
15 16
|
eqtrdi |
|- ( A = (/) -> ( A X. B ) = (/) ) |
| 18 |
17
|
necon3i |
|- ( ( A X. B ) =/= (/) -> A =/= (/) ) |
| 19 |
|
xpeq2 |
|- ( B = (/) -> ( A X. B ) = ( A X. (/) ) ) |
| 20 |
|
xp0 |
|- ( A X. (/) ) = (/) |
| 21 |
19 20
|
eqtrdi |
|- ( B = (/) -> ( A X. B ) = (/) ) |
| 22 |
21
|
necon3i |
|- ( ( A X. B ) =/= (/) -> B =/= (/) ) |
| 23 |
18 22
|
jca |
|- ( ( A X. B ) =/= (/) -> ( A =/= (/) /\ B =/= (/) ) ) |
| 24 |
14 23
|
impbii |
|- ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) ) |