| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqimss |
⊢ ( 𝐵 = 𝐶 → 𝐵 ⊆ 𝐶 ) |
| 2 |
1
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 4 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 5 |
3 4
|
sylibr |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 6 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) |
| 7 |
|
eqimss2 |
⊢ ( 𝐵 = 𝐶 → 𝐶 ⊆ 𝐵 ) |
| 8 |
7
|
reximi |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∃ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ) |
| 9 |
|
ssiun |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 10 |
6 8 9
|
3syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 11 |
5 10
|
eqssd |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) |