Metamath Proof Explorer


Theorem iuneqconst2

Description: Indexed union of identical classes. (Contributed by Zhi Wang, 6-Nov-2025)

Ref Expression
Assertion iuneqconst2 ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵 = 𝐶 ) → 𝑥𝐴 𝐵 = 𝐶 )

Proof

Step Hyp Ref Expression
1 eqimss ( 𝐵 = 𝐶𝐵𝐶 )
2 1 ralimi ( ∀ 𝑥𝐴 𝐵 = 𝐶 → ∀ 𝑥𝐴 𝐵𝐶 )
3 2 adantl ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵 = 𝐶 ) → ∀ 𝑥𝐴 𝐵𝐶 )
4 iunss ( 𝑥𝐴 𝐵𝐶 ↔ ∀ 𝑥𝐴 𝐵𝐶 )
5 3 4 sylibr ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵 = 𝐶 ) → 𝑥𝐴 𝐵𝐶 )
6 r19.2z ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵 = 𝐶 ) → ∃ 𝑥𝐴 𝐵 = 𝐶 )
7 eqimss2 ( 𝐵 = 𝐶𝐶𝐵 )
8 7 reximi ( ∃ 𝑥𝐴 𝐵 = 𝐶 → ∃ 𝑥𝐴 𝐶𝐵 )
9 ssiun ( ∃ 𝑥𝐴 𝐶𝐵𝐶 𝑥𝐴 𝐵 )
10 6 8 9 3syl ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵 = 𝐶 ) → 𝐶 𝑥𝐴 𝐵 )
11 5 10 eqssd ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵 = 𝐶 ) → 𝑥𝐴 𝐵 = 𝐶 )