Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
ZF Set Theory - start with the Axiom of Extensionality
Indexed union and intersection
iuneqconst2
Next ⟩
iineqconst2
Metamath Proof Explorer
Ascii
Unicode
Theorem
iuneqconst2
Description:
Indexed union of identical classes.
(Contributed by
Zhi Wang
, 6-Nov-2025)
Ref
Expression
Assertion
iuneqconst2
⊢
A
≠
∅
∧
∀
x
∈
A
B
=
C
→
⋃
x
∈
A
B
=
C
Proof
Step
Hyp
Ref
Expression
1
eqimss
⊢
B
=
C
→
B
⊆
C
2
1
ralimi
⊢
∀
x
∈
A
B
=
C
→
∀
x
∈
A
B
⊆
C
3
2
adantl
⊢
A
≠
∅
∧
∀
x
∈
A
B
=
C
→
∀
x
∈
A
B
⊆
C
4
iunss
⊢
⋃
x
∈
A
B
⊆
C
↔
∀
x
∈
A
B
⊆
C
5
3
4
sylibr
⊢
A
≠
∅
∧
∀
x
∈
A
B
=
C
→
⋃
x
∈
A
B
⊆
C
6
r19.2z
⊢
A
≠
∅
∧
∀
x
∈
A
B
=
C
→
∃
x
∈
A
B
=
C
7
eqimss2
⊢
B
=
C
→
C
⊆
B
8
7
reximi
⊢
∃
x
∈
A
B
=
C
→
∃
x
∈
A
C
⊆
B
9
ssiun
⊢
∃
x
∈
A
C
⊆
B
→
C
⊆
⋃
x
∈
A
B
10
6
8
9
3syl
⊢
A
≠
∅
∧
∀
x
∈
A
B
=
C
→
C
⊆
⋃
x
∈
A
B
11
5
10
eqssd
⊢
A
≠
∅
∧
∀
x
∈
A
B
=
C
→
⋃
x
∈
A
B
=
C