Metamath Proof Explorer


Theorem imasubc3lem1

Description: Lemma for imasubc3 . (Contributed by Zhi Wang, 7-Nov-2025)

Ref Expression
Hypotheses imasubc3lem1.s 𝑆 = ( 𝐹𝐴 )
imasubc3lem1.f ( 𝜑𝐹 : 𝐵1-1𝐶 )
imasubc3lem1.x ( 𝜑𝑋𝑆 )
Assertion imasubc3lem1 ( 𝜑 → ( { ( 𝐹𝑋 ) } = ( 𝐹 “ { 𝑋 } ) ∧ ( 𝐹 ‘ ( 𝐹𝑋 ) ) = 𝑋 ∧ ( 𝐹𝑋 ) ∈ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 imasubc3lem1.s 𝑆 = ( 𝐹𝐴 )
2 imasubc3lem1.f ( 𝜑𝐹 : 𝐵1-1𝐶 )
3 imasubc3lem1.x ( 𝜑𝑋𝑆 )
4 f1f1orn ( 𝐹 : 𝐵1-1𝐶𝐹 : 𝐵1-1-onto→ ran 𝐹 )
5 2 4 syl ( 𝜑𝐹 : 𝐵1-1-onto→ ran 𝐹 )
6 dff1o4 ( 𝐹 : 𝐵1-1-onto→ ran 𝐹 ↔ ( 𝐹 Fn 𝐵 𝐹 Fn ran 𝐹 ) )
7 6 simprbi ( 𝐹 : 𝐵1-1-onto→ ran 𝐹 𝐹 Fn ran 𝐹 )
8 5 7 syl ( 𝜑 𝐹 Fn ran 𝐹 )
9 imassrn ( 𝐹𝐴 ) ⊆ ran 𝐹
10 3 1 eleqtrdi ( 𝜑𝑋 ∈ ( 𝐹𝐴 ) )
11 9 10 sselid ( 𝜑𝑋 ∈ ran 𝐹 )
12 fnsnfv ( ( 𝐹 Fn ran 𝐹𝑋 ∈ ran 𝐹 ) → { ( 𝐹𝑋 ) } = ( 𝐹 “ { 𝑋 } ) )
13 8 11 12 syl2anc ( 𝜑 → { ( 𝐹𝑋 ) } = ( 𝐹 “ { 𝑋 } ) )
14 f1ocnvfv2 ( ( 𝐹 : 𝐵1-1-onto→ ran 𝐹𝑋 ∈ ran 𝐹 ) → ( 𝐹 ‘ ( 𝐹𝑋 ) ) = 𝑋 )
15 5 11 14 syl2anc ( 𝜑 → ( 𝐹 ‘ ( 𝐹𝑋 ) ) = 𝑋 )
16 f1ocnvdm ( ( 𝐹 : 𝐵1-1-onto→ ran 𝐹𝑋 ∈ ran 𝐹 ) → ( 𝐹𝑋 ) ∈ 𝐵 )
17 5 11 16 syl2anc ( 𝜑 → ( 𝐹𝑋 ) ∈ 𝐵 )
18 13 15 17 3jca ( 𝜑 → ( { ( 𝐹𝑋 ) } = ( 𝐹 “ { 𝑋 } ) ∧ ( 𝐹 ‘ ( 𝐹𝑋 ) ) = 𝑋 ∧ ( 𝐹𝑋 ) ∈ 𝐵 ) )