| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubc3lem1.s |
⊢ 𝑆 = ( 𝐹 “ 𝐴 ) |
| 2 |
|
imasubc3lem1.f |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1→ 𝐶 ) |
| 3 |
|
imasubc3lem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 4 |
|
f1f1orn |
⊢ ( 𝐹 : 𝐵 –1-1→ 𝐶 → 𝐹 : 𝐵 –1-1-onto→ ran 𝐹 ) |
| 5 |
2 4
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1-onto→ ran 𝐹 ) |
| 6 |
|
dff1o4 |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ ran 𝐹 ↔ ( 𝐹 Fn 𝐵 ∧ ◡ 𝐹 Fn ran 𝐹 ) ) |
| 7 |
6
|
simprbi |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ ran 𝐹 → ◡ 𝐹 Fn ran 𝐹 ) |
| 8 |
5 7
|
syl |
⊢ ( 𝜑 → ◡ 𝐹 Fn ran 𝐹 ) |
| 9 |
|
imassrn |
⊢ ( 𝐹 “ 𝐴 ) ⊆ ran 𝐹 |
| 10 |
3 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐹 “ 𝐴 ) ) |
| 11 |
9 10
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝐹 ) |
| 12 |
|
fnsnfv |
⊢ ( ( ◡ 𝐹 Fn ran 𝐹 ∧ 𝑋 ∈ ran 𝐹 ) → { ( ◡ 𝐹 ‘ 𝑋 ) } = ( ◡ 𝐹 “ { 𝑋 } ) ) |
| 13 |
8 11 12
|
syl2anc |
⊢ ( 𝜑 → { ( ◡ 𝐹 ‘ 𝑋 ) } = ( ◡ 𝐹 “ { 𝑋 } ) ) |
| 14 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ ran 𝐹 ∧ 𝑋 ∈ ran 𝐹 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑋 ) ) = 𝑋 ) |
| 15 |
5 11 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑋 ) ) = 𝑋 ) |
| 16 |
|
f1ocnvdm |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ ran 𝐹 ∧ 𝑋 ∈ ran 𝐹 ) → ( ◡ 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
| 17 |
5 11 16
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
| 18 |
13 15 17
|
3jca |
⊢ ( 𝜑 → ( { ( ◡ 𝐹 ‘ 𝑋 ) } = ( ◡ 𝐹 “ { 𝑋 } ) ∧ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑋 ) ) = 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) ) |