Metamath Proof Explorer


Theorem imasubc3lem2

Description: Lemma for imasubc3 . (Contributed by Zhi Wang, 7-Nov-2025)

Ref Expression
Hypotheses imasubc3lem1.s 𝑆 = ( 𝐹𝐴 )
imasubc3lem1.f ( 𝜑𝐹 : 𝐵1-1𝐶 )
imasubc3lem1.x ( 𝜑𝑋𝑆 )
imasubc3lem2.y ( 𝜑𝑌𝑆 )
imasubc3lem2.f ( 𝜑𝐹𝑉 )
imasubc3lem2.k 𝐾 = ( 𝑥𝑆 , 𝑦𝑆 𝑝 ∈ ( ( 𝐹 “ { 𝑥 } ) × ( 𝐹 “ { 𝑦 } ) ) ( ( 𝐺𝑝 ) “ ( 𝐻𝑝 ) ) )
Assertion imasubc3lem2 ( 𝜑 → ( 𝑋 𝐾 𝑌 ) = ( ( ( 𝐹𝑋 ) 𝐺 ( 𝐹𝑌 ) ) “ ( ( 𝐹𝑋 ) 𝐻 ( 𝐹𝑌 ) ) ) )

Proof

Step Hyp Ref Expression
1 imasubc3lem1.s 𝑆 = ( 𝐹𝐴 )
2 imasubc3lem1.f ( 𝜑𝐹 : 𝐵1-1𝐶 )
3 imasubc3lem1.x ( 𝜑𝑋𝑆 )
4 imasubc3lem2.y ( 𝜑𝑌𝑆 )
5 imasubc3lem2.f ( 𝜑𝐹𝑉 )
6 imasubc3lem2.k 𝐾 = ( 𝑥𝑆 , 𝑦𝑆 𝑝 ∈ ( ( 𝐹 “ { 𝑥 } ) × ( 𝐹 “ { 𝑦 } ) ) ( ( 𝐺𝑝 ) “ ( 𝐻𝑝 ) ) )
7 5 5 3 4 6 imasubclem3 ( 𝜑 → ( 𝑋 𝐾 𝑌 ) = 𝑝 ∈ ( ( 𝐹 “ { 𝑋 } ) × ( 𝐹 “ { 𝑌 } ) ) ( ( 𝐺𝑝 ) “ ( 𝐻𝑝 ) ) )
8 1 2 3 imasubc3lem1 ( 𝜑 → ( { ( 𝐹𝑋 ) } = ( 𝐹 “ { 𝑋 } ) ∧ ( 𝐹 ‘ ( 𝐹𝑋 ) ) = 𝑋 ∧ ( 𝐹𝑋 ) ∈ 𝐵 ) )
9 8 simp1d ( 𝜑 → { ( 𝐹𝑋 ) } = ( 𝐹 “ { 𝑋 } ) )
10 1 2 4 imasubc3lem1 ( 𝜑 → ( { ( 𝐹𝑌 ) } = ( 𝐹 “ { 𝑌 } ) ∧ ( 𝐹 ‘ ( 𝐹𝑌 ) ) = 𝑌 ∧ ( 𝐹𝑌 ) ∈ 𝐵 ) )
11 10 simp1d ( 𝜑 → { ( 𝐹𝑌 ) } = ( 𝐹 “ { 𝑌 } ) )
12 9 11 xpeq12d ( 𝜑 → ( { ( 𝐹𝑋 ) } × { ( 𝐹𝑌 ) } ) = ( ( 𝐹 “ { 𝑋 } ) × ( 𝐹 “ { 𝑌 } ) ) )
13 fvex ( 𝐹𝑋 ) ∈ V
14 fvex ( 𝐹𝑌 ) ∈ V
15 13 14 xpsn ( { ( 𝐹𝑋 ) } × { ( 𝐹𝑌 ) } ) = { ⟨ ( 𝐹𝑋 ) , ( 𝐹𝑌 ) ⟩ }
16 12 15 eqtr3di ( 𝜑 → ( ( 𝐹 “ { 𝑋 } ) × ( 𝐹 “ { 𝑌 } ) ) = { ⟨ ( 𝐹𝑋 ) , ( 𝐹𝑌 ) ⟩ } )
17 16 iuneq1d ( 𝜑 𝑝 ∈ ( ( 𝐹 “ { 𝑋 } ) × ( 𝐹 “ { 𝑌 } ) ) ( ( 𝐺𝑝 ) “ ( 𝐻𝑝 ) ) = 𝑝 ∈ { ⟨ ( 𝐹𝑋 ) , ( 𝐹𝑌 ) ⟩ } ( ( 𝐺𝑝 ) “ ( 𝐻𝑝 ) ) )
18 7 17 eqtrd ( 𝜑 → ( 𝑋 𝐾 𝑌 ) = 𝑝 ∈ { ⟨ ( 𝐹𝑋 ) , ( 𝐹𝑌 ) ⟩ } ( ( 𝐺𝑝 ) “ ( 𝐻𝑝 ) ) )
19 opex ⟨ ( 𝐹𝑋 ) , ( 𝐹𝑌 ) ⟩ ∈ V
20 fveq2 ( 𝑝 = ⟨ ( 𝐹𝑋 ) , ( 𝐹𝑌 ) ⟩ → ( 𝐺𝑝 ) = ( 𝐺 ‘ ⟨ ( 𝐹𝑋 ) , ( 𝐹𝑌 ) ⟩ ) )
21 df-ov ( ( 𝐹𝑋 ) 𝐺 ( 𝐹𝑌 ) ) = ( 𝐺 ‘ ⟨ ( 𝐹𝑋 ) , ( 𝐹𝑌 ) ⟩ )
22 20 21 eqtr4di ( 𝑝 = ⟨ ( 𝐹𝑋 ) , ( 𝐹𝑌 ) ⟩ → ( 𝐺𝑝 ) = ( ( 𝐹𝑋 ) 𝐺 ( 𝐹𝑌 ) ) )
23 fveq2 ( 𝑝 = ⟨ ( 𝐹𝑋 ) , ( 𝐹𝑌 ) ⟩ → ( 𝐻𝑝 ) = ( 𝐻 ‘ ⟨ ( 𝐹𝑋 ) , ( 𝐹𝑌 ) ⟩ ) )
24 df-ov ( ( 𝐹𝑋 ) 𝐻 ( 𝐹𝑌 ) ) = ( 𝐻 ‘ ⟨ ( 𝐹𝑋 ) , ( 𝐹𝑌 ) ⟩ )
25 23 24 eqtr4di ( 𝑝 = ⟨ ( 𝐹𝑋 ) , ( 𝐹𝑌 ) ⟩ → ( 𝐻𝑝 ) = ( ( 𝐹𝑋 ) 𝐻 ( 𝐹𝑌 ) ) )
26 22 25 imaeq12d ( 𝑝 = ⟨ ( 𝐹𝑋 ) , ( 𝐹𝑌 ) ⟩ → ( ( 𝐺𝑝 ) “ ( 𝐻𝑝 ) ) = ( ( ( 𝐹𝑋 ) 𝐺 ( 𝐹𝑌 ) ) “ ( ( 𝐹𝑋 ) 𝐻 ( 𝐹𝑌 ) ) ) )
27 19 26 iunxsn 𝑝 ∈ { ⟨ ( 𝐹𝑋 ) , ( 𝐹𝑌 ) ⟩ } ( ( 𝐺𝑝 ) “ ( 𝐻𝑝 ) ) = ( ( ( 𝐹𝑋 ) 𝐺 ( 𝐹𝑌 ) ) “ ( ( 𝐹𝑋 ) 𝐻 ( 𝐹𝑌 ) ) )
28 18 27 eqtrdi ( 𝜑 → ( 𝑋 𝐾 𝑌 ) = ( ( ( 𝐹𝑋 ) 𝐺 ( 𝐹𝑌 ) ) “ ( ( 𝐹𝑋 ) 𝐻 ( 𝐹𝑌 ) ) ) )