| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubc3lem1.s |
⊢ 𝑆 = ( 𝐹 “ 𝐴 ) |
| 2 |
|
imasubc3lem1.f |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1→ 𝐶 ) |
| 3 |
|
imasubc3lem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 4 |
|
imasubc3lem2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
| 5 |
|
imasubc3lem2.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
| 6 |
|
imasubc3lem2.k |
⊢ 𝐾 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑥 } ) × ( ◡ 𝐹 “ { 𝑦 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) |
| 7 |
5 5 3 4 6
|
imasubclem3 |
⊢ ( 𝜑 → ( 𝑋 𝐾 𝑌 ) = ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐹 “ { 𝑌 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) |
| 8 |
1 2 3
|
imasubc3lem1 |
⊢ ( 𝜑 → ( { ( ◡ 𝐹 ‘ 𝑋 ) } = ( ◡ 𝐹 “ { 𝑋 } ) ∧ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑋 ) ) = 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) ) |
| 9 |
8
|
simp1d |
⊢ ( 𝜑 → { ( ◡ 𝐹 ‘ 𝑋 ) } = ( ◡ 𝐹 “ { 𝑋 } ) ) |
| 10 |
1 2 4
|
imasubc3lem1 |
⊢ ( 𝜑 → ( { ( ◡ 𝐹 ‘ 𝑌 ) } = ( ◡ 𝐹 “ { 𝑌 } ) ∧ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑌 ) ) = 𝑌 ∧ ( ◡ 𝐹 ‘ 𝑌 ) ∈ 𝐵 ) ) |
| 11 |
10
|
simp1d |
⊢ ( 𝜑 → { ( ◡ 𝐹 ‘ 𝑌 ) } = ( ◡ 𝐹 “ { 𝑌 } ) ) |
| 12 |
9 11
|
xpeq12d |
⊢ ( 𝜑 → ( { ( ◡ 𝐹 ‘ 𝑋 ) } × { ( ◡ 𝐹 ‘ 𝑌 ) } ) = ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐹 “ { 𝑌 } ) ) ) |
| 13 |
|
fvex |
⊢ ( ◡ 𝐹 ‘ 𝑋 ) ∈ V |
| 14 |
|
fvex |
⊢ ( ◡ 𝐹 ‘ 𝑌 ) ∈ V |
| 15 |
13 14
|
xpsn |
⊢ ( { ( ◡ 𝐹 ‘ 𝑋 ) } × { ( ◡ 𝐹 ‘ 𝑌 ) } ) = { 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 } |
| 16 |
12 15
|
eqtr3di |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐹 “ { 𝑌 } ) ) = { 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 } ) |
| 17 |
16
|
iuneq1d |
⊢ ( 𝜑 → ∪ 𝑝 ∈ ( ( ◡ 𝐹 “ { 𝑋 } ) × ( ◡ 𝐹 “ { 𝑌 } ) ) ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) = ∪ 𝑝 ∈ { 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 } ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) |
| 18 |
7 17
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 𝐾 𝑌 ) = ∪ 𝑝 ∈ { 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 } ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) ) |
| 19 |
|
opex |
⊢ 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 ∈ V |
| 20 |
|
fveq2 |
⊢ ( 𝑝 = 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 → ( 𝐺 ‘ 𝑝 ) = ( 𝐺 ‘ 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 ) ) |
| 21 |
|
df-ov |
⊢ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) = ( 𝐺 ‘ 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 ) |
| 22 |
20 21
|
eqtr4di |
⊢ ( 𝑝 = 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 → ( 𝐺 ‘ 𝑝 ) = ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑝 = 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 → ( 𝐻 ‘ 𝑝 ) = ( 𝐻 ‘ 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 ) ) |
| 24 |
|
df-ov |
⊢ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) = ( 𝐻 ‘ 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 ) |
| 25 |
23 24
|
eqtr4di |
⊢ ( 𝑝 = 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 → ( 𝐻 ‘ 𝑝 ) = ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) |
| 26 |
22 25
|
imaeq12d |
⊢ ( 𝑝 = 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 → ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) = ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) “ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ) |
| 27 |
19 26
|
iunxsn |
⊢ ∪ 𝑝 ∈ { 〈 ( ◡ 𝐹 ‘ 𝑋 ) , ( ◡ 𝐹 ‘ 𝑌 ) 〉 } ( ( 𝐺 ‘ 𝑝 ) “ ( 𝐻 ‘ 𝑝 ) ) = ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) “ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) |
| 28 |
18 27
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑋 𝐾 𝑌 ) = ( ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐺 ( ◡ 𝐹 ‘ 𝑌 ) ) “ ( ( ◡ 𝐹 ‘ 𝑋 ) 𝐻 ( ◡ 𝐹 ‘ 𝑌 ) ) ) ) |