Metamath Proof Explorer
Description: The Cartesian product of two singletons is the singleton consisting in
the associated ordered pair. (Contributed by NM, 4-Nov-2006)
|
|
Ref |
Expression |
|
Hypotheses |
xpsn.1 |
⊢ 𝐴 ∈ V |
|
|
xpsn.2 |
⊢ 𝐵 ∈ V |
|
Assertion |
xpsn |
⊢ ( { 𝐴 } × { 𝐵 } ) = { 〈 𝐴 , 𝐵 〉 } |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
xpsn.1 |
⊢ 𝐴 ∈ V |
2 |
|
xpsn.2 |
⊢ 𝐵 ∈ V |
3 |
|
xpsng |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( { 𝐴 } × { 𝐵 } ) = { 〈 𝐴 , 𝐵 〉 } ) |
4 |
1 2 3
|
mp2an |
⊢ ( { 𝐴 } × { 𝐵 } ) = { 〈 𝐴 , 𝐵 〉 } |