Metamath Proof Explorer


Theorem xpsn

Description: The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by NM, 4-Nov-2006)

Ref Expression
Hypotheses xpsn.1
|- A e. _V
xpsn.2
|- B e. _V
Assertion xpsn
|- ( { A } X. { B } ) = { <. A , B >. }

Proof

Step Hyp Ref Expression
1 xpsn.1
 |-  A e. _V
2 xpsn.2
 |-  B e. _V
3 xpsng
 |-  ( ( A e. _V /\ B e. _V ) -> ( { A } X. { B } ) = { <. A , B >. } )
4 1 2 3 mp2an
 |-  ( { A } X. { B } ) = { <. A , B >. }