| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubc3lem1.s |
|- S = ( F " A ) |
| 2 |
|
imasubc3lem1.f |
|- ( ph -> F : B -1-1-> C ) |
| 3 |
|
imasubc3lem1.x |
|- ( ph -> X e. S ) |
| 4 |
|
imasubc3lem2.y |
|- ( ph -> Y e. S ) |
| 5 |
|
imasubc3lem2.f |
|- ( ph -> F e. V ) |
| 6 |
|
imasubc3lem2.k |
|- K = ( x e. S , y e. S |-> U_ p e. ( ( `' F " { x } ) X. ( `' F " { y } ) ) ( ( G ` p ) " ( H ` p ) ) ) |
| 7 |
5 5 3 4 6
|
imasubclem3 |
|- ( ph -> ( X K Y ) = U_ p e. ( ( `' F " { X } ) X. ( `' F " { Y } ) ) ( ( G ` p ) " ( H ` p ) ) ) |
| 8 |
1 2 3
|
imasubc3lem1 |
|- ( ph -> ( { ( `' F ` X ) } = ( `' F " { X } ) /\ ( F ` ( `' F ` X ) ) = X /\ ( `' F ` X ) e. B ) ) |
| 9 |
8
|
simp1d |
|- ( ph -> { ( `' F ` X ) } = ( `' F " { X } ) ) |
| 10 |
1 2 4
|
imasubc3lem1 |
|- ( ph -> ( { ( `' F ` Y ) } = ( `' F " { Y } ) /\ ( F ` ( `' F ` Y ) ) = Y /\ ( `' F ` Y ) e. B ) ) |
| 11 |
10
|
simp1d |
|- ( ph -> { ( `' F ` Y ) } = ( `' F " { Y } ) ) |
| 12 |
9 11
|
xpeq12d |
|- ( ph -> ( { ( `' F ` X ) } X. { ( `' F ` Y ) } ) = ( ( `' F " { X } ) X. ( `' F " { Y } ) ) ) |
| 13 |
|
fvex |
|- ( `' F ` X ) e. _V |
| 14 |
|
fvex |
|- ( `' F ` Y ) e. _V |
| 15 |
13 14
|
xpsn |
|- ( { ( `' F ` X ) } X. { ( `' F ` Y ) } ) = { <. ( `' F ` X ) , ( `' F ` Y ) >. } |
| 16 |
12 15
|
eqtr3di |
|- ( ph -> ( ( `' F " { X } ) X. ( `' F " { Y } ) ) = { <. ( `' F ` X ) , ( `' F ` Y ) >. } ) |
| 17 |
16
|
iuneq1d |
|- ( ph -> U_ p e. ( ( `' F " { X } ) X. ( `' F " { Y } ) ) ( ( G ` p ) " ( H ` p ) ) = U_ p e. { <. ( `' F ` X ) , ( `' F ` Y ) >. } ( ( G ` p ) " ( H ` p ) ) ) |
| 18 |
7 17
|
eqtrd |
|- ( ph -> ( X K Y ) = U_ p e. { <. ( `' F ` X ) , ( `' F ` Y ) >. } ( ( G ` p ) " ( H ` p ) ) ) |
| 19 |
|
opex |
|- <. ( `' F ` X ) , ( `' F ` Y ) >. e. _V |
| 20 |
|
fveq2 |
|- ( p = <. ( `' F ` X ) , ( `' F ` Y ) >. -> ( G ` p ) = ( G ` <. ( `' F ` X ) , ( `' F ` Y ) >. ) ) |
| 21 |
|
df-ov |
|- ( ( `' F ` X ) G ( `' F ` Y ) ) = ( G ` <. ( `' F ` X ) , ( `' F ` Y ) >. ) |
| 22 |
20 21
|
eqtr4di |
|- ( p = <. ( `' F ` X ) , ( `' F ` Y ) >. -> ( G ` p ) = ( ( `' F ` X ) G ( `' F ` Y ) ) ) |
| 23 |
|
fveq2 |
|- ( p = <. ( `' F ` X ) , ( `' F ` Y ) >. -> ( H ` p ) = ( H ` <. ( `' F ` X ) , ( `' F ` Y ) >. ) ) |
| 24 |
|
df-ov |
|- ( ( `' F ` X ) H ( `' F ` Y ) ) = ( H ` <. ( `' F ` X ) , ( `' F ` Y ) >. ) |
| 25 |
23 24
|
eqtr4di |
|- ( p = <. ( `' F ` X ) , ( `' F ` Y ) >. -> ( H ` p ) = ( ( `' F ` X ) H ( `' F ` Y ) ) ) |
| 26 |
22 25
|
imaeq12d |
|- ( p = <. ( `' F ` X ) , ( `' F ` Y ) >. -> ( ( G ` p ) " ( H ` p ) ) = ( ( ( `' F ` X ) G ( `' F ` Y ) ) " ( ( `' F ` X ) H ( `' F ` Y ) ) ) ) |
| 27 |
19 26
|
iunxsn |
|- U_ p e. { <. ( `' F ` X ) , ( `' F ` Y ) >. } ( ( G ` p ) " ( H ` p ) ) = ( ( ( `' F ` X ) G ( `' F ` Y ) ) " ( ( `' F ` X ) H ( `' F ` Y ) ) ) |
| 28 |
18 27
|
eqtrdi |
|- ( ph -> ( X K Y ) = ( ( ( `' F ` X ) G ( `' F ` Y ) ) " ( ( `' F ` X ) H ( `' F ` Y ) ) ) ) |