| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasubc3lem1.s |
|- S = ( F " A ) |
| 2 |
|
imasubc3lem1.f |
|- ( ph -> F : B -1-1-> C ) |
| 3 |
|
imasubc3lem1.x |
|- ( ph -> X e. S ) |
| 4 |
|
f1f1orn |
|- ( F : B -1-1-> C -> F : B -1-1-onto-> ran F ) |
| 5 |
2 4
|
syl |
|- ( ph -> F : B -1-1-onto-> ran F ) |
| 6 |
|
dff1o4 |
|- ( F : B -1-1-onto-> ran F <-> ( F Fn B /\ `' F Fn ran F ) ) |
| 7 |
6
|
simprbi |
|- ( F : B -1-1-onto-> ran F -> `' F Fn ran F ) |
| 8 |
5 7
|
syl |
|- ( ph -> `' F Fn ran F ) |
| 9 |
|
imassrn |
|- ( F " A ) C_ ran F |
| 10 |
3 1
|
eleqtrdi |
|- ( ph -> X e. ( F " A ) ) |
| 11 |
9 10
|
sselid |
|- ( ph -> X e. ran F ) |
| 12 |
|
fnsnfv |
|- ( ( `' F Fn ran F /\ X e. ran F ) -> { ( `' F ` X ) } = ( `' F " { X } ) ) |
| 13 |
8 11 12
|
syl2anc |
|- ( ph -> { ( `' F ` X ) } = ( `' F " { X } ) ) |
| 14 |
|
f1ocnvfv2 |
|- ( ( F : B -1-1-onto-> ran F /\ X e. ran F ) -> ( F ` ( `' F ` X ) ) = X ) |
| 15 |
5 11 14
|
syl2anc |
|- ( ph -> ( F ` ( `' F ` X ) ) = X ) |
| 16 |
|
f1ocnvdm |
|- ( ( F : B -1-1-onto-> ran F /\ X e. ran F ) -> ( `' F ` X ) e. B ) |
| 17 |
5 11 16
|
syl2anc |
|- ( ph -> ( `' F ` X ) e. B ) |
| 18 |
13 15 17
|
3jca |
|- ( ph -> ( { ( `' F ` X ) } = ( `' F " { X } ) /\ ( F ` ( `' F ` X ) ) = X /\ ( `' F ` X ) e. B ) ) |