Metamath Proof Explorer


Theorem idfu2nda

Description: Value of the morphism part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025)

Ref Expression
Hypotheses idfu2nda.i
|- I = ( idFunc ` C )
idfu2nda.d
|- ( ph -> I e. ( D Func E ) )
idfu2nda.b
|- ( ph -> B = ( Base ` D ) )
idfu2nda.x
|- ( ph -> X e. B )
idfu2nda.y
|- ( ph -> Y e. B )
idfu2nda.h
|- ( ph -> H = ( X ( Hom ` D ) Y ) )
Assertion idfu2nda
|- ( ph -> ( X ( 2nd ` I ) Y ) = ( _I |` H ) )

Proof

Step Hyp Ref Expression
1 idfu2nda.i
 |-  I = ( idFunc ` C )
2 idfu2nda.d
 |-  ( ph -> I e. ( D Func E ) )
3 idfu2nda.b
 |-  ( ph -> B = ( Base ` D ) )
4 idfu2nda.x
 |-  ( ph -> X e. B )
5 idfu2nda.y
 |-  ( ph -> Y e. B )
6 idfu2nda.h
 |-  ( ph -> H = ( X ( Hom ` D ) Y ) )
7 eqid
 |-  ( Base ` C ) = ( Base ` C )
8 1 2 eqeltrrid
 |-  ( ph -> ( idFunc ` C ) e. ( D Func E ) )
9 idfurcl
 |-  ( ( idFunc ` C ) e. ( D Func E ) -> C e. Cat )
10 8 9 syl
 |-  ( ph -> C e. Cat )
11 eqid
 |-  ( Hom ` C ) = ( Hom ` C )
12 1 2 3 idfu1stalem
 |-  ( ph -> B = ( Base ` C ) )
13 4 12 eleqtrd
 |-  ( ph -> X e. ( Base ` C ) )
14 5 12 eleqtrd
 |-  ( ph -> Y e. ( Base ` C ) )
15 1 7 10 11 13 14 idfu2nd
 |-  ( ph -> ( X ( 2nd ` I ) Y ) = ( _I |` ( X ( Hom ` C ) Y ) ) )
16 eqid
 |-  ( Hom ` D ) = ( Hom ` D )
17 1 idfucl
 |-  ( C e. Cat -> I e. ( C Func C ) )
18 10 17 syl
 |-  ( ph -> I e. ( C Func C ) )
19 18 func1st2nd
 |-  ( ph -> ( 1st ` I ) ( C Func C ) ( 2nd ` I ) )
20 2 func1st2nd
 |-  ( ph -> ( 1st ` I ) ( D Func E ) ( 2nd ` I ) )
21 19 20 funchomf
 |-  ( ph -> ( Homf ` C ) = ( Homf ` D ) )
22 7 11 16 21 13 14 homfeqval
 |-  ( ph -> ( X ( Hom ` C ) Y ) = ( X ( Hom ` D ) Y ) )
23 6 22 eqtr4d
 |-  ( ph -> H = ( X ( Hom ` C ) Y ) )
24 23 reseq2d
 |-  ( ph -> ( _I |` H ) = ( _I |` ( X ( Hom ` C ) Y ) ) )
25 15 24 eqtr4d
 |-  ( ph -> ( X ( 2nd ` I ) Y ) = ( _I |` H ) )