Metamath Proof Explorer


Theorem idfu1a

Description: Value of the object part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025)

Ref Expression
Hypotheses idfu2nda.i I = id func C
idfu2nda.d φ I D Func E
idfu2nda.b φ B = Base D
idfu2nda.x φ X B
Assertion idfu1a φ 1 st I X = X

Proof

Step Hyp Ref Expression
1 idfu2nda.i I = id func C
2 idfu2nda.d φ I D Func E
3 idfu2nda.b φ B = Base D
4 idfu2nda.x φ X B
5 eqid Base C = Base C
6 1 2 eqeltrrid φ id func C D Func E
7 idfurcl id func C D Func E C Cat
8 6 7 syl φ C Cat
9 1 2 3 idfu1stalem φ B = Base C
10 4 9 eleqtrd φ X Base C
11 1 5 8 10 idfu1 φ 1 st I X = X